Ecology impacts the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban humans.

Louise B Thingholm, Corinna Bang, Malte C Rühlemann, Annika Starke, Florian Sicks, Verena Kaspari, Anabell Jandowsky, Kai Frölich, Gabriele Ismer, Andreas Bernhard, Claudia Bombis, Barbara Struve, Philipp Rausch, Andre Franke
Author Information
  1. Louise B Thingholm: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany.
  2. Corinna Bang: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany.
  3. Malte C Rühlemann: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany.
  4. Annika Starke: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany.
  5. Florian Sicks: Tierpark Berlin-Friedrichsfelde GmbH, Berlin, Germany.
  6. Verena Kaspari: Tierparkvereinigung Neumuenster e.V, Neumuenster, Germany.
  7. Anabell Jandowsky: Tierpark Arche Warder e.V, Warder, Germany.
  8. Kai Frölich: Tierpark Arche Warder e.V, Warder, Germany.
  9. Gabriele Ismer: Tierpark Gettorf GmbH & Co. KG, Gettorf, Germany.
  10. Andreas Bernhard: Zoo Leipzig GmbH, Leipzig, Germany.
  11. Claudia Bombis: Tierpark Hagenbeck Gemeinnützige Gesellschaft mbH, Hamburg, Germany.
  12. Barbara Struve: Leintalzoo Schwaigern, Freudenmühle 1, 74193, Schwaigern, Germany.
  13. Philipp Rausch: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany.
  14. Andre Franke: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Campus Kiel, Rosalind-Franklin-Str, 12, 24105, Kiel, Germany. a.franke@ikmb.uni-kiel.de.

Abstract

Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.

Keywords

References

  1. Sci Rep. 2019 Dec 12;9(1):19008 [PMID: 31831829]
  2. Front Genet. 2014 Aug 19;5:282 [PMID: 25191338]
  3. Annu Rev Microbiol. 2011;65:411-29 [PMID: 21682646]
  4. Nat Commun. 2017 Feb 23;8:14319 [PMID: 28230052]
  5. Curr Opin Gastroenterol. 2015 Jan;31(1):69-75 [PMID: 25394236]
  6. Annu Rev Immunol. 2010;28:623-67 [PMID: 20192812]
  7. Nat Commun. 2012;3:1179 [PMID: 23149725]
  8. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2703-10 [PMID: 24912178]
  9. Sci Adv. 2016 Jan 15;2(1):e1500997 [PMID: 26824072]
  10. Am J Primatol. 2016 Mar;78(3):283-7 [PMID: 26317875]
  11. Nat Rev Microbiol. 2008 Oct;6(10):776-88 [PMID: 18794915]
  12. Nat Commun. 2019 May 16;10(1):2200 [PMID: 31097702]
  13. Nat Rev Immunol. 2004 Jun;4(6):478-85 [PMID: 15173836]
  14. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  15. Science. 2020 Jan 17;367(6475):250-251 [PMID: 31949069]
  16. Trans R Soc Trop Med Hyg. 2019 Apr 29;: [PMID: 31034044]
  17. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): [PMID: 33876746]
  18. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  19. New Microbes New Infect. 2018 Nov 02;27:14-21 [PMID: 30555706]
  20. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  21. Eur J Nutr. 2018 Feb;57(1):1-24 [PMID: 28393285]
  22. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9372-3 [PMID: 24938784]
  23. Mol Ecol. 2021 Aug;30(15):3677-3687 [PMID: 34013536]
  24. Nat Rev Immunol. 2008 Jun;8(6):411-20 [PMID: 18469830]
  25. Science. 2011 May 20;332(6032):970-4 [PMID: 21596990]
  26. Mol Ecol. 2012 Jun;21(11):2617-27 [PMID: 22519571]
  27. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  28. Microbiome. 2021 Mar 22;9(1):68 [PMID: 33752735]
  29. mBio. 2015 May 19;6(3):e00022-15 [PMID: 25991678]
  30. Genome Biol. 2019 Oct 8;20(1):201 [PMID: 31590679]
  31. Mol Ecol. 2018 Apr;27(8):1884-1897 [PMID: 29290090]
  32. Annu Rev Microbiol. 1984;38:161-92 [PMID: 6388490]
  33. Elife. 2015 Mar 16;4: [PMID: 25774601]
  34. Oecologia. 2016 Mar;180(3):717-33 [PMID: 26597549]
  35. PLoS Negl Trop Dis. 2021 Mar 3;15(3):e0009232 [PMID: 33657123]
  36. ISME J. 2020 Jun;14(6):1584-1599 [PMID: 32203121]
  37. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81 [PMID: 27573830]
  38. BMC Biol. 2017 Dec 27;15(1):127 [PMID: 29282061]
  39. Am J Primatol. 2018 Jun;80(6):e22867 [PMID: 29862519]
  40. Sci Adv. 2015 Apr 3;1(3): [PMID: 26229982]
  41. ISME J. 2019 Mar;13(3):576-587 [PMID: 29995839]
  42. Mol Ecol. 2016 Aug;25(16):3776-800 [PMID: 27297628]
  43. mSystems. 2018 Jun 26;3(3): [PMID: 29963641]
  44. Elife. 2013 Apr 16;2:e00458 [PMID: 23599893]
  45. Nat Rev Microbiol. 2021 Oct;19(10):639-653 [PMID: 34045709]
  46. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 [PMID: 20679230]
  47. J Lipid Res. 2013 Sep;54(9):2325-40 [PMID: 23821742]
  48. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2193-7 [PMID: 18268332]
  49. ISME J. 2013 Jul;7(7):1344-53 [PMID: 23486247]
  50. Appl Environ Microbiol. 2020 Aug 3;86(16): [PMID: 32503908]
  51. Appl Environ Microbiol. 1995 Sep;61(9):3202-7 [PMID: 7574628]
  52. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  53. Am J Primatol. 2019 Dec;81(12):e23072 [PMID: 31788810]
  54. Sci Rep. 2020 Apr 20;10(1):6582 [PMID: 32313214]
  55. Am J Primatol. 2019 Dec;81(12):e23061 [PMID: 31713260]

MeSH Term

Bacteria
Biodiversity
Diet
Ecosystem
Feces
Gastrointestinal Microbiome
Humans
Phylogeny
Prevotella
RNA, Ribosomal, 16S
Spirochaetales
Urban Population

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0microbiotadiversityguthumansmammalswesternizeddifferentmammalianhostphylogenyecologyfecalstudydecreaseSpirochaetesPrevotellamicrobialhumanmicrobiomeswithinalsoassociatedchronicdiseasesphylogeneticimpactshealthanalysisdietcaptivecompositioncommunitiesEcologyComparedhugelostbecomingspecializedanimal-baseddiets-especiallycomparedchimpsgeneticallyclosestancestorsloweredpopulationskindsinflammatorydeepenknowledgeecologicfitnessestablishedhereinpresentedbiobankwellcomprehensivetotal368stoolsamples38animalspeciesincludingHomosapiensbelongingfourdiverseorderscollectedsevenlocationsanalyzed16SrRNAgeneampliconsequencingComprehensivedataperformeddetermineoverallimpactvslocationiiexaminegeneralpatternbacterialacrossByusingcontrolleddesignverifydominantdriverHowevereffectappearsableovercomethereforestudieddetailfuturestudiesimportantlyobserveremarkableplatyrrhinesprobablyduesocialbehaviorstructureOurhighlightsimportancerelationshipevolutionParticularlyobservedmightlifestyledependentrapidevolutionarychangespotentiallyinvolvedestablishmentdysbioticpromoteetiologyurbanGutHumanMammalsPhylogenyPhysiology

Similar Articles

Cited By