Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer.

Ana Nikolic, Divya Singhal, Katrina Ellestad, Michael Johnston, Yaoqing Shen, Aaron Gillmor, Sorana Morrissy, J Gregory Cairncross, Steven Jones, Mathieu Lupien, Jennifer A Chan, Paola Neri, Nizar Bahlis, Marco Gallo
Author Information
  1. Ana Nikolic: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ORCID
  2. Divya Singhal: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ORCID
  3. Katrina Ellestad: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  4. Michael Johnston: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ORCID
  5. Yaoqing Shen: Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.
  6. Aaron Gillmor: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  7. Sorana Morrissy: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  8. J Gregory Cairncross: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  9. Steven Jones: Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada. ORCID
  10. Mathieu Lupien: Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. ORCID
  11. Jennifer A Chan: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ORCID
  12. Paola Neri: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  13. Nizar Bahlis: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
  14. Marco Gallo: Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. ORCID

Abstract

Single-cell epigenomic assays have tremendous potential to illuminate mechanisms of transcriptional control in functionally diverse cancer cell populations. However, application of these techniques to clinical tumor specimens has been hampered by the current inability to distinguish malignant from nonmalignant cells, which potently confounds data analysis and interpretation. Here, we describe Copy-scAT, an R package that uses single-cell epigenomic data to infer copy number variants (CNVs) that define cancer cells. Copy-scAT enables studies of subclonal chromatin dynamics in complex tumors like glioblastoma. By deploying Copy-scAT, we uncovered potent influences of genetics on chromatin accessibility profiles in individual subclones. Consequently, some genetic subclones were predisposed to acquire stem-like or more differentiated molecular phenotypes, reminiscent of developmental paradigms. Copy-scAT is ideal for studies of the relationships between genetics and epigenetics in malignancies with high levels of intratumoral heterogeneity and to investigate how cancer cells interface with their microenvironment.

References

  1. Nature. 2019 Aug;572(7767):67-73 [PMID: 31043743]
  2. Nat Commun. 2019 Apr 23;10(1):1903 [PMID: 31015418]
  3. Science. 2017 Mar 31;355(6332): [PMID: 28360267]
  4. R J. 2016 Aug;8(1):289-317 [PMID: 27818791]
  5. Nature. 2015 Jul 23;523(7561):486-90 [PMID: 26083756]
  6. Cell Rep. 2017 Oct 31;21(5):1399-1410 [PMID: 29091775]
  7. Nature. 2016 Nov 10;539(7628):309-313 [PMID: 27806376]
  8. PLoS Comput Biol. 2016 Apr 21;12(4):e1004873 [PMID: 27100738]
  9. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  10. Cancer Res. 2019 May 1;79(9):2111-2123 [PMID: 30877103]
  11. Nat Methods. 2017 Oct;14(10):975-978 [PMID: 28825706]
  12. Cell. 2019 Aug 8;178(4):835-849.e21 [PMID: 31327527]
  13. Nucleic Acids Res. 2018 Jan 4;46(D1):D260-D266 [PMID: 29140473]
  14. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  15. Bioinformatics. 2018 Sep 15;34(18):3217-3219 [PMID: 29897414]
  16. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  17. Cancer Cell. 2011 Dec 13;20(6):810-7 [PMID: 22137795]
  18. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  19. Cancer Cell. 2015 Sep 14;28(3):307-317 [PMID: 26373278]
  20. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  21. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  22. Cancer Cell. 2020 Apr 13;37(4):456-470 [PMID: 32289270]
  23. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  24. Cancer Cell. 2020 Jul 13;38(1):44-59.e9 [PMID: 32663469]

Word Cloud

Created with Highcharts 10.0.0cancerCopy-scATcellschromatinsubclonesepigenomicdatasingle-cellstudiesgeneticsaccessibilitygeneticSingle-cellassaystremendouspotentialilluminatemechanismstranscriptionalcontrolfunctionallydiversecellpopulationsHoweverapplicationtechniquesclinicaltumorspecimenshamperedcurrentinabilitydistinguishmalignantnonmalignantpotentlyconfoundsanalysisinterpretationdescribeRpackageusesinfercopynumbervariantsCNVsdefineenablessubclonaldynamicscomplextumorslikeglioblastomadeployinguncoveredpotentinfluencesprofilesindividualConsequentlypredisposedacquirestem-likedifferentiatedmolecularphenotypesreminiscentdevelopmentalparadigmsidealrelationshipsepigeneticsmalignancieshighlevelsintratumoralheterogeneityinvestigateinterfacemicroenvironmentCopy-scAT:Deconvoluting

Similar Articles

Cited By