The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin.

Beata Wielkopolan, Krzysztof Krawczyk, Alicja Szabelska-Beręsewicz, Aleksandra Obrępalska-Stęplowska
Author Information
  1. Beata Wielkopolan: Department of Monitoring and Signaling of Agrophages, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland. ORCID
  2. Krzysztof Krawczyk: Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland. ORCID
  3. Alicja Szabelska-Beręsewicz: Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St, 60-624, Poznan, Poland. ORCID
  4. Aleksandra Obrępalska-Stęplowska: Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, 20 Węgorka St, 60-318, Poznan, Poland. olaob@o2.pl. ORCID

Abstract

Cereal leaf beetle (CLB, Oulema melanopus, Coleoptera, Chrysomelidae) is a serious agricultural pest that causes considerable damages to agricultural production. The aim of this study was to characterize the bacterial communities associated with larvae and imagoes of CLB collected from various cereal host species and locations. The bacterial profile was characterized by 16S rRNA gene sequencing at the V3-V4 hypervariable region. Using taxonomy-based analysis, the bacterial community of CLB containing 16 phyla, 26 classes, 49 orders, 78 families, 94 genera, and 63 species of bacteria was identified. The abundance of Wolbachia, Rickettsia, and Lactococcus genus was significantly higher in CLB imagoes than in larvae. Statistical analysis confirmed that the bacterial community of the larvae is more diverse in comparison to imagoes and that insects collected from spring barley and wheat are characterized by a much higher biodiversity level of bacterial genera and species than insects collected from other cereals. Obtained results indicated that the developmental stage, the host plant, and the insect's sampling location affected the CLB's microbiome. Additionally, the CLB core microbiome was determined. It consists of 2 genera (Wolbachia and Rickettsia) shared by at least 90% tested CLB insects, regardless of the variables analysed.

References

  1. Ecol Evol. 2018 Apr 16;8(9):4704-4720 [PMID: 29760910]
  2. Cell Host Microbe. 2009 Aug 20;6(2):107-14 [PMID: 19683677]
  3. Front Microbiol. 2019 Aug 23;10:1948 [PMID: 31507561]
  4. Springerplus. 2016 Jun 29;5(1):911 [PMID: 27386355]
  5. Proc Biol Sci. 2007 Aug 22;274(1621):1979-84 [PMID: 17567556]
  6. PLoS Biol. 2007 May;5(5):e96 [PMID: 17425405]
  7. Appl Environ Microbiol. 2013 Jun;79(11):3468-75 [PMID: 23542624]
  8. PLoS One. 2016 May 18;11(5):e0155497 [PMID: 27191722]
  9. Mol Ecol. 2008 Mar;17(5):1375-86 [PMID: 18302695]
  10. Front Microbiol. 2020 Jun 26;11:1357 [PMID: 32676060]
  11. Front Plant Sci. 2016 Aug 09;7:1163 [PMID: 27555855]
  12. Sci Rep. 2017 Aug 25;7(1):9424 [PMID: 28842593]
  13. FEMS Microbiol Ecol. 2019 May 1;95(5): [PMID: 30997495]
  14. Curr Opin Insect Sci. 2015 Jun;9:86-90 [PMID: 32846714]
  15. Sci Rep. 2019 Apr 23;9(1):6435 [PMID: 31015559]
  16. PLoS One. 2017 Mar 30;12(3):e0174754 [PMID: 28358907]
  17. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9376-81 [PMID: 26170303]
  18. Nat Prod Rep. 2018 Apr 25;35(4):336-356 [PMID: 29393944]
  19. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  20. Cell Host Microbe. 2011 Oct 20;10(4):359-67 [PMID: 22018236]
  21. PLoS One. 2013 Nov 01;8(11):e79061 [PMID: 24223880]
  22. Nucleic Acids Res. 1989 Oct 11;17(19):7843-53 [PMID: 2798131]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. FEMS Microbiol Lett. 2008 Apr;281(2):215-20 [PMID: 18312577]
  25. Mol Ecol. 2012 Oct;21(20):5124-37 [PMID: 22978555]
  26. Zoological Lett. 2017 Aug 19;3:13 [PMID: 28828177]
  27. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  28. Biometrika. 1947;34(1-2):28-35 [PMID: 20287819]
  29. Insects. 2020 Aug 18;11(8): [PMID: 32824858]
  30. Microb Ecol. 2019 Nov;78(4):995-1013 [PMID: 30915518]
  31. J Chem Ecol. 2016 Mar;42(3):193-201 [PMID: 26961755]
  32. Dev Comp Immunol. 2016 May;58:102-18 [PMID: 26695127]
  33. J Chem Ecol. 2015 Jan;41(1):75-84 [PMID: 25475786]
  34. Folia Microbiol (Praha). 2017 Jan;62(1):1-9 [PMID: 27544667]
  35. Planta. 2016 Aug;244(2):313-32 [PMID: 27170360]
  36. PeerJ. 2019 May 7;7:e6852 [PMID: 31119076]
  37. Mol Ecol. 2018 Jan;27(1):182-195 [PMID: 29165844]
  38. mSystems. 2019 Nov 26;4(6): [PMID: 31771975]
  39. Genetica. 2011 May;139(5):541-50 [PMID: 20844936]
  40. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190604 [PMID: 32772660]
  41. PLoS One. 2016 Aug 17;11(8):e0161118 [PMID: 27532606]
  42. Appl Environ Microbiol. 2014 Sep;80(17):5254-64 [PMID: 24928884]
  43. Pathogens. 2020 Dec 21;9(12): [PMID: 33371529]
  44. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1230-7 [PMID: 22517738]
  45. PLoS One. 2021 Mar 19;16(3):e0241529 [PMID: 33739998]
  46. Microb Ecol. 2009 Nov;58(4):879-91 [PMID: 19543937]
  47. Sci Rep. 2019 Feb 26;9(1):2792 [PMID: 30808905]
  48. Front Microbiol. 2017 Nov 28;8:2237 [PMID: 29234308]
  49. J R Soc Interface. 2017 Sep;14(134): [PMID: 28904005]
  50. Sci Rep. 2018 Apr 12;8(1):5890 [PMID: 29651035]
  51. BMC Genomics. 2014 Dec 12;15:1096 [PMID: 25495900]
  52. Sci Rep. 2016 Jul 08;6:29505 [PMID: 27389097]
  53. Trends Biotechnol. 2007 Aug;25(8):338-42 [PMID: 17576018]
  54. Biometrics. 1983 Mar;39(1):1-11 [PMID: 6871338]
  55. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  56. Nat Rev Microbiol. 2008 Feb;6(2):121-31 [PMID: 18180751]
  57. Appl Environ Microbiol. 2012 Apr;78(8):2830-40 [PMID: 22307297]
  58. PLoS One. 2018 Jan 29;13(1):e0192003 [PMID: 29377955]
  59. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22 [PMID: 22529384]
  60. BMC Biol. 2014 Nov 12;12:87 [PMID: 25387460]
  61. Nat Commun. 2015 Jul 14;6:7618 [PMID: 26173063]
  62. Animals (Basel). 2020 Dec 09;10(12): [PMID: 33317133]

MeSH Term

Animals
Bacteria
Coleoptera
Hordeum
Larva
Microbiota
RNA, Ribosomal, 16S
Rickettsia
Triticum
Wolbachia

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0CLBbacteriallarvaeimagoescollectedhostspeciesgenerainsectsmicrobiomeleafbeetlemelanopusagriculturalcerealcharacterizedanalysiscommunityWolbachiaRickettsiahigherdevelopmentalstageplantinsect'sCereal OulemaColeopteraChrysomelidaea seriouspestcausesconsiderabledamagesproductionaimstudycharacterizecommunitiesassociatedvariouslocationsprofile16SrRNAgenesequencingV3-V4hypervariableregionUsingtaxonomy-basedcontaining16phyla26classes49orders78families94and 63bacteriaidentifiedabundanceLactococcusgenussignificantlyStatisticalconfirmeddiversecomparisonspringbarleywheatmuchbiodiversitylevelcerealsObtainedresultsindicatedsamplinglocationaffectedCLB'sAdditionallycoredeterminedconsists2sharedleast90%testedregardlessvariablesanalysedstructureOulemadependsorigin

Similar Articles

Cited By