ZLN005 protects against ischemia-reperfusion-induced kidney injury by mitigating oxidative stress through the restoration of mitochondrial fatty acid oxidation.

Zhiyu Wang, Zongjie Fu, Chongjian Wang, Jing Xu, Hongkun Ma, Mengdi Jiang, Tingting Xu, Xiaobei Feng, Wen Zhang
Author Information
  1. Zhiyu Wang: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  2. Zongjie Fu: Department of Nephrology, Zhongshan Hospital, Fudan University Shanghai 200032, China.
  3. Chongjian Wang: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  4. Jing Xu: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  5. Hongkun Ma: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  6. Mengdi Jiang: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  7. Tingting Xu: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  8. Xiaobei Feng: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.
  9. Wen Zhang: Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China.

Abstract

To date, the treatment of acute kidney injury (AKI) remains a difficult problem for clinicians. In the present study, we assessed whether ZLN005, a novel peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) agonist, can protect against ischemic AKI in vivo and in vitro. Notably, ZLN005 treatment significantly alleviated Ischemia-reperfusion (I/R)-induced tubular injury and reversed the decrease in hypoxia-reoxygenation-induced cell viability by restoring PGC-1α expression in a dose-dependent manner. This beneficial effect of ZLN005 was associated with the preservation of mitochondrial fatty acid oxidation (MitoFAO) and the alleviation of oxidative stress. Cotreatment with etomoxir, a specific inhibitor of carnitine palmitoyltransferase-1α (CPT-1α) activity, or CPT-1α siRNA abrogated ZLN005-induced antistress responses by mitigating reactive oxygen species production and decreasing apoptosis under ischemia-hypoxia conditions by suppressing MitoFAO. Further studies revealed that activation of endoplasmic reticulum (ER) stress may be involved in the effect of CPT-1α inhibition observed in vivo and in vitro. Collectively, our results suggest that ZLN005 confers a protective effect on I/R-induced kidney injury by mitigating ER stress through the restoration of MitoFAO by targeting PGC-1α.

Keywords

References

  1. Exp Cell Res. 2016 Jul 1;345(1):25-36 [PMID: 27208585]
  2. Cell Mol Neurobiol. 2018 May;38(4):929-939 [PMID: 29159732]
  3. Gastroenterology. 2012 Apr;142(4):938-46 [PMID: 22240484]
  4. Annu Rev Med. 2016;67:293-307 [PMID: 26768243]
  5. Kidney Int. 2002 Oct;62(4):1208-18 [PMID: 12234291]
  6. J Am Soc Nephrol. 2016 Nov;27(11):3356-3367 [PMID: 27000065]
  7. Prog Lipid Res. 2014 Jan;53:124-44 [PMID: 24362249]
  8. Free Radic Biol Med. 2013 Sep;64:78-84 [PMID: 23845966]
  9. Curr Opin Nephrol Hypertens. 1999 Jul;8(4):473-7 [PMID: 10491743]
  10. Biomed Res Int. 2016;2016:4634386 [PMID: 27127787]
  11. EBioMedicine. 2016 Dec;14:55-64 [PMID: 27916548]
  12. Exp Cell Res. 2017 Nov 15;360(2):292-302 [PMID: 28928081]
  13. Antioxid Redox Signal. 2016 Oct 20;25(12):639-641 [PMID: 27357313]
  14. Front Med (Lausanne). 2015 Aug 05;2:52 [PMID: 26301223]
  15. J Cell Physiol. 2021 Jan;236(1):625-640 [PMID: 32583421]
  16. Theranostics. 2020 Aug 1;10(21):9702-9720 [PMID: 32863955]
  17. Sci Rep. 2018 Apr 19;8(1):6289 [PMID: 29674640]
  18. Trends Cell Biol. 2004 Jan;14(1):8-12 [PMID: 14729175]
  19. J Clin Invest. 2011 Oct;121(10):4003-14 [PMID: 21881206]
  20. Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63 [PMID: 24355989]
  21. PLoS One. 2014 Sep 05;9(9):e106647 [PMID: 25191961]
  22. Diabetes. 2013 Apr;62(4):1297-307 [PMID: 23250358]
  23. Contrib Nephrol. 2011;174:119-128 [PMID: 21921616]
  24. Nat Med. 2015 Jan;21(1):37-46 [PMID: 25419705]
  25. PLoS One. 2015 Jul 24;10(7):e0133912 [PMID: 26207996]
  26. Cell Death Dis. 2020 Apr 16;11(4):233 [PMID: 32300102]
  27. Inflammation. 2020 Oct;43(5):1806-1820 [PMID: 32529514]
  28. J Lipid Res. 2016 Aug;57(8):1329-38 [PMID: 27146479]
  29. Aging Cell. 2019 Oct;18(5):e12994 [PMID: 31313501]
  30. J Cell Mol Med. 2020 May;24(9):5109-5121 [PMID: 32281286]
  31. Kidney Int. 2017 Apr;91(4):880-895 [PMID: 28040265]
  32. Cell Metab. 2008 Jan;7(1):45-56 [PMID: 18177724]
  33. Diabetes. 2021 Mar;70(3):680-695 [PMID: 33408126]
  34. J Lipid Res. 2003 Feb;44(2):388-98 [PMID: 12576521]
  35. Kidney Int. 2005 Jan;67(1):111-21 [PMID: 15610234]
  36. J Am Soc Nephrol. 2014 Oct;25(10):2278-89 [PMID: 24700871]
  37. Oxid Med Cell Longev. 2020 Mar 20;2020:5849794 [PMID: 32256954]
  38. Hypertension. 2017 Jul;70(1):166-173 [PMID: 28533333]
  39. Oxid Med Cell Longev. 2019 Dec 12;2019:8294141 [PMID: 33273997]
  40. Int J Biochem. 1978;9(10):729-34 [PMID: 710681]
  41. Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:535-565 [PMID: 27860548]
  42. Acta Physiol (Oxf). 2013 Aug;208(4):410-21 [PMID: 23710679]
  43. Cell Metab. 2018 Sep 4;28(3):504-515.e7 [PMID: 30043753]
  44. J Surg Res. 2012 Sep;177(1):157-64 [PMID: 22698429]
  45. Redox Biol. 2020 Sep;36:101671 [PMID: 32829253]
  46. Am J Physiol Renal Physiol. 2018 Jan 1;314(1):F1-F8 [PMID: 28931521]
  47. Pharmacol Ther. 2012 May;134(2):139-55 [PMID: 22274552]
  48. Cell Metab. 2018 Dec 4;28(6):881-894.e13 [PMID: 30146488]
  49. Cancer Sci. 2019 Jun;110(6):2050-2062 [PMID: 30945396]
  50. Lancet. 2012 Aug 25;380(9843):756-66 [PMID: 22617274]
  51. Biochem Pharmacol. 2020 Oct;180:114174 [PMID: 32717227]
  52. Kidney Int. 1991 Mar;39(3):476-500 [PMID: 2062034]
  53. Metabolites. 2021 Jan 14;11(1): [PMID: 33466824]
  54. Lipids. 1969 Nov;4(6):599-606 [PMID: 5367944]

Word Cloud

Created with Highcharts 10.0.0ZLN005injurystresskidneyPGC-1αeffectMitoFAOoxidativeCPT-1αmitigatingtreatmentAKIperoxisomeproliferator-activatedreceptor-γcoactivator-1αvivovitromitochondrialfattyacidoxidationcarnitineapoptosisERrestorationdateacuteremainsdifficultproblemclinicianspresentstudyassessedwhethernovelagonistcanprotectischemicNotablysignificantlyalleviatedIschemia-reperfusionI/R-inducedtubularreverseddecreasehypoxia-reoxygenation-inducedcellviabilityrestoringexpressiondose-dependentmannerbeneficialassociatedpreservationalleviationCotreatmentetomoxirspecificinhibitorpalmitoyltransferase-1αactivitysiRNAabrogatedZLN005-inducedantistressresponsesreactiveoxygenspeciesproductiondecreasingischemia-hypoxiaconditionssuppressingstudiesrevealedactivationendoplasmicreticulummayinvolvedinhibitionobservedCollectivelyresultssuggestconfersprotectiveI/R-inducedtargetingprotectsischemia-reperfusion-inducedAcutepalmitoyltransferase-1α

Similar Articles

Cited By