In vivo assessment of OXPHOS capacity using 3 T CrCEST MRI in Friedreich's ataxia.

Gayatri Maria Schur, Julia Dunn, Sara Nguyen, Anna Dedio, Kristin Wade, Jaclyn Tamaroff, Nithya Mitta, Neil Wilson, Ravinder Reddy, David R Lynch, Shana E McCormack
Author Information
  1. Gayatri Maria Schur: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. gayatri.schur@nyulangone.org. ORCID
  2. Julia Dunn: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  3. Sara Nguyen: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  4. Anna Dedio: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  5. Kristin Wade: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  6. Jaclyn Tamaroff: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  7. Nithya Mitta: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  8. Neil Wilson: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
  9. Ravinder Reddy: Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
  10. David R Lynch: Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  11. Shana E McCormack: Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Abstract

BACKGROUND: Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by decreased expression of frataxin, a protein involved in many cellular metabolic processes, including mitochondrial oxidative phosphorylation (OXPHOS). Our objective was to assess skeletal muscle oxidative metabolism in vivo in adults with FRDA as compared to adults without FRDA using chemical exchange saturation transfer (CrCEST) MRI, which measures free creatine (Cr) over time following an in-magnet plantar flexion exercise.
METHODS: Participants included adults with FRDA (n = 11) and healthy adults (n = 25). All underwent 3-Tesla CrCEST MRI of the calf before and after in-scanner plantar flexion exercise. Participants also underwent whole-body dual-energy X-ray absorptiometry (DXA) scans to measure body composition and completed questionnaires to assess physical activity.
RESULTS: We found prolonged post-exercise exponential decline in CrCEST (τCr) in the lateral gastrocnemius (LG, 274 s vs. 138 s, p = 0.01) in adults with FRDA (vs. healthy adults), likely reflecting decreased OXPHOS capacity. Adults with FRDA (vs. healthy adults) also engaged different muscle groups during exercise, as indicated by muscle group-specific changes in creatine with exercise (∆CrCEST), possibly reflecting decreased coordination. Across all participants, increased adiposity and decreased usual physical activity were associated with smaller ∆CrCEST.
CONCLUSION: In FRDA, CrCEST MRI may be a useful biomarker of muscle-group-specific decline in OXPHOS capacity that can be leveraged to track within-participant changes over time. Appropriate participant selection and further optimization of the exercise stimulus will enhance the utility of this technique.

Keywords

References

  1. Front Pharmacol. 2014 Jun 03;5:130 [PMID: 24917819]
  2. PLoS Biol. 2004 Oct;2(10):e348 [PMID: 15486583]
  3. Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9 [PMID: 23702032]
  4. Int J Obes Relat Metab Disord. 2000 Nov;24(11):1453-8 [PMID: 11126342]
  5. Neuroimage. 2010 Feb 15;49(4):3015-26 [PMID: 19948229]
  6. JCI Insight. 2016 Nov 3;1(18):e88207 [PMID: 27812541]
  7. ESC Heart Fail. 2021 Aug;8(4):2698-2712 [PMID: 33991175]
  8. Magn Reson Med. 2014 Jan;71(1):164-72 [PMID: 23412909]
  9. Brain. 2006 Dec;129(Pt 12):3402-12 [PMID: 16815877]
  10. Am J Physiol Endocrinol Metab. 2002 Jun;282(6):E1191-6 [PMID: 12006347]
  11. Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1554-64 [PMID: 21502126]
  12. Diabetes Care. 2006 Apr;29(4):895-900 [PMID: 16567834]
  13. PLoS One. 2013 Jul 29;8(7):e69229 [PMID: 23922695]
  14. Neuromuscul Disord. 2000 Aug;10(6):430-5 [PMID: 10899450]
  15. Arch Phys Med Rehabil. 2010 Jul;91(7):1044-50 [PMID: 20599042]
  16. J Am Soc Nephrol. 2003 Jul;14(7 Suppl 2):S148-53 [PMID: 12819321]
  17. Pflugers Arch. 1974 Apr 22;348(3):247-55 [PMID: 4275915]
  18. Neurosci Lett. 2001 Jun 29;306(3):169-72 [PMID: 11406322]
  19. Hum Mol Genet. 2009 Jul 1;18(13):2452-61 [PMID: 19376812]
  20. Arch Neurol. 2008 Oct;65(10):1296-303 [PMID: 18852343]
  21. Biochim Biophys Acta. 1996 Sep 12;1276(2):87-105 [PMID: 8816944]
  22. J Magn Reson Imaging. 2011 Nov;34(5):1143-50 [PMID: 22006551]
  23. J Appl Physiol (1985). 1989 Apr;66(4):1756-9 [PMID: 2732167]
  24. Med Sci Sports Exerc. 2005 Dec;37(12):2086-93 [PMID: 16331134]
  25. Curr Radiol Rep. 2013 Jun 1;1(2):102-114 [PMID: 23730540]
  26. J Neurol Sci. 1973 Jan;18(1):111-29 [PMID: 4120482]
  27. Epidemiol Rev. 2007;29:115-28 [PMID: 17494056]
  28. Magn Reson Med. 2009 Jun;61(6):1441-50 [PMID: 19358232]
  29. Magn Reson Med. 2011 Apr;65(4):927-48 [PMID: 21337419]
  30. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11492-5 [PMID: 10500204]
  31. Genet Med. 2015 Sep;17(9):689-701 [PMID: 25503498]
  32. Sci Rep. 2020 Apr 8;10(1):6095 [PMID: 32269244]

Grants

  1. 5K23DK102659-03/NIDDK NIH HHS
  2. T32 GM136573/NIGMS NIH HHS
  3. UL1 TR001878/NCATS NIH HHS
  4. 1T32GM136573-01/NIGMS NIH HHS
  5. K23 DK102659/NIDDK NIH HHS
  6. 5UL1TR001878-05/NCATS NIH HHS
  7. 5R03DK114491-02/NIDDK NIH HHS
  8. R03 DK114491/NIDDK NIH HHS
  9. 5UL1TR001878-05/NCATS NIH HHS
  10. 1T32GM136573-01/NIGMS NIH HHS
  11. 5K23DK102659-03/NIDDK NIH HHS
  12. 5R03DK114491-02/NIDDK NIH HHS

MeSH Term

Adult
Creatine
Friedreich Ataxia
Humans
Iron-Binding Proteins
Magnetic Resonance Imaging
Neurodegenerative Diseases
Oxidative Phosphorylation

Chemicals

Iron-Binding Proteins
Creatine

Word Cloud

Created with Highcharts 10.0.0FRDAadultsOXPHOSCrCESTexercisedecreasedmuscleMRIataxiahealthyvscapacityFriedreich'soxidativeassessmetabolismvivousingcreatinetimeplantarflexionParticipantsunderwentalsophysicalactivitydeclinereflectingchanges∆CrCESTBACKGROUND:neurodegenerativediseasecausedexpressionfrataxinproteininvolvedmanycellularmetabolicprocessesincludingmitochondrialphosphorylationobjectiveskeletalcomparedwithoutchemicalexchangesaturationtransfermeasuresfreeCrfollowingin-magnetMETHODS:includedn = 11n = 253-Teslacalfin-scannerwhole-bodydual-energyX-rayabsorptiometryDXAscansmeasurebodycompositioncompletedquestionnairesRESULTS:foundprolongedpost-exerciseexponentialτCrlateralgastrocnemiusLG274 s138 sp = 001likelyAdultsengageddifferentgroupsindicatedgroup-specificpossiblycoordinationAcrossparticipantsincreasedadiposityusualassociatedsmallerCONCLUSION:mayusefulbiomarkermuscle-group-specificcanleveragedtrackwithin-participantAppropriateparticipantselectionoptimizationstimuluswillenhanceutilitytechniqueassessment3 TExerciseFriedreich’sMagneticresonanceimagingMitochondrialdisordersOxidativeSkeletal

Similar Articles

Cited By