Discrete-space continuous-time models of marine mammal exposure to Navy sonar.

Charlotte M Jones-Todd, Enrico Pirotta, John W Durban, Diane E Claridge, Robin W Baird, Erin A Falcone, Gregory S Schorr, Stephanie Watwood, Len Thomas
Author Information
  1. Charlotte M Jones-Todd: Department of Statistics, University of Auckland, Auckland, 1142, New Zealand. ORCID
  2. Enrico Pirotta: Department of Mathematics and Statistics, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, Washington, 98686, USA. ORCID
  3. John W Durban: Southall Environmental Associates Inc., 9099 Soquel Drive, Suite 8, Aptos, California, 95003, USA.
  4. Diane E Claridge: Bahamas Marine Mammal Research Organization, Marsh Harbour, Abaco, Bahamas.
  5. Robin W Baird: Cascadia Research Collective, 218 ½ W. 4th Avenue, Olympia, Washington, 98501, USA.
  6. Erin A Falcone: Marine Ecology and Telemetry Research, 2420 Nellita Road NW, Seabeck, Washington, 98380, USA.
  7. Gregory S Schorr: Marine Ecology and Telemetry Research, 2420 Nellita Road NW, Seabeck, Washington, 98380, USA.
  8. Stephanie Watwood: Naval Undersea Warfare Center Division, Code 70T, Newport, Rhode Island, 02841, USA.
  9. Len Thomas: Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews, KY16 9LZ, UK.

Abstract

Assessing the patterns of wildlife attendance to specific areas is relevant across many fundamental and applied ecological studies, particularly when animals are at risk of being exposed to stressors within or outside the boundaries of those areas. Marine mammals are increasingly being exposed to human activities that may cause behavioral and physiological changes, including military exercises using active sonars. Assessment of the population-level consequences of anthropogenic disturbance requires robust and efficient tools to quantify the levels of aggregate exposure for individuals in a population over biologically relevant time frames. We propose a discrete-space, continuous-time approach to estimate individual transition rates across the boundaries of an area of interest, informed by telemetry data collected with uncertainty. The approach allows inferring the effect of stressors on transition rates, the progressive return to baseline movement patterns, and any difference among individuals. We apply the modeling framework to telemetry data from Blainville's beaked whale (Mesoplodon densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center (AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance response. Our approach supports the assessment of the aggregate exposure of individuals to sonar and the resulting population-level consequences. The approach has potential applications across many applied and fundamental problems where telemetry data are used to characterize animal occurrence within specific areas.

Keywords

Associated Data

Dryad | 10.5061/dryad.dr7sqv9zb

References

  1. Ecol Evol. 2018 May 20;8(12):6081-6090 [PMID: 29988430]
  2. Curr Biol. 2017 Jun 5;27(11):R502-R507 [PMID: 28586687]
  3. PLoS One. 2010 Jan 15;5(1):e8677 [PMID: 20090942]
  4. Ecol Appl. 2015 Dec;25(8):2101-18 [PMID: 26910942]
  5. Trends Ecol Evol. 2019 May;34(5):459-473 [PMID: 30879872]
  6. Sci Rep. 2014 Nov 13;4:7031 [PMID: 25391309]
  7. Ecology. 2010 Jan;91(1):273-85 [PMID: 20380216]
  8. Mov Ecol. 2018 Nov 02;6:22 [PMID: 30410764]
  9. Ecology. 2008 May;89(5):1208-15 [PMID: 18543615]
  10. PLoS One. 2013;8(3):e59235 [PMID: 23527144]
  11. Proc Biol Sci. 2019 Jan 30;286(1895):20182533 [PMID: 30963955]
  12. Ecology. 2015 Oct;96(10):2598-604 [PMID: 26649381]
  13. Trends Ecol Evol. 2009 Mar;24(3):127-35 [PMID: 19185386]
  14. PLoS One. 2011 Mar 14;6(3):e17009 [PMID: 21423729]
  15. Proc Biol Sci. 2019 Mar 27;286(1899):20182592 [PMID: 30890101]
  16. Ecol Evol. 2017 Feb 28;7(7):2101-2111 [PMID: 28405276]
  17. Ecol Evol. 2018 Sep 12;8(19):9934-9946 [PMID: 30386587]
  18. PLoS One. 2014 Jan 21;9(1):e85064 [PMID: 24465477]
  19. Biol Lett. 2013 Jul 03;9(4):20130223 [PMID: 23825085]
  20. Proc Biol Sci. 2016 Jul 13;283(1834): [PMID: 27412274]
  21. Stat Med. 2002 Jul 15;21(13):1899-911 [PMID: 12111896]
  22. Ecol Appl. 2022 Jan;32(1):e02475 [PMID: 34653299]
  23. Ecology. 2012 Nov;93(11):2336-42 [PMID: 23236905]
  24. Biometrika. 2011 Sep;98(3):685-700 [PMID: 22822261]
  25. R Soc Open Sci. 2017 Aug 30;4(8):170629 [PMID: 28879004]
  26. Science. 2008 Feb 15;319(5865):948-52 [PMID: 18276889]

MeSH Term

Animals
Sound
Whales

Word Cloud

Created with Highcharts 10.0.0exposureapproachtransitionareasonarareasacrossaggregateindividualsratestelemetrydatapatternsattendancespecificrelevantmanyfundamentalappliedexposedstressorswithinboundariesexercisespopulation-levelconsequencesdisturbancecontinuous-timebeakedusedNavyAssessingwildlifeecologicalstudiesparticularlyanimalsriskoutsideMarinemammalsincreasinglyhumanactivitiesmaycausebehavioralphysiologicalchangesincludingmilitaryusingactivesonarsAssessmentanthropogenicrequiresrobustefficienttoolsquantifylevelspopulationbiologicallytimeframesproposediscrete-spaceestimateindividualinterestinformedcollecteduncertaintyallowsinferringeffectprogressivereturnbaselinemovementdifferenceamongapplymodelingframeworkBlainville'swhaleMesoplodondensirostristaggedBahamasAtlanticUnderseaTestEvaluationCenterAUTECUSfleetreadinesstrainingshowchangedresultreflectingavoidanceresponsesupportsassessmentresultingpotentialapplicationsproblemscharacterizeanimaloccurrenceDiscrete-spacemodelsmarinemammalTemplateModelBuilderwhalesindividual-levelrandomeffectsprobability

Similar Articles

Cited By