The Effects of Tryptamine Psychedelics in the Brain: A meta-Analysis of Functional and Review of Molecular Imaging Studies.

João Castelhano, Gisela Lima, Marta Teixeira, Carla Soares, Marta Pais, Miguel Castelo-Branco
Author Information
  1. João Castelhano: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  2. Gisela Lima: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  3. Marta Teixeira: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  4. Carla Soares: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  5. Marta Pais: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  6. Miguel Castelo-Branco: CIBIT/ ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Abstract

There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.

Keywords

References

  1. Neuroimage. 2002 Oct;17(2):922-7 [PMID: 12377166]
  2. Eur Neuropsychopharmacol. 2016 Jul;26(7):1099-109 [PMID: 27084302]
  3. Curr Top Behav Neurosci. 2018;36:257-282 [PMID: 27900674]
  4. Biol Psychiatry. 2015 Oct 15;78(8):572-81 [PMID: 24882567]
  5. J Psychopharmacol. 2016 Dec;30(12):1181-1197 [PMID: 27909165]
  6. Neuropsychopharmacology. 1999 Jun;20(6):565-81 [PMID: 10327426]
  7. Neuron. 2010 Feb 25;65(4):550-62 [PMID: 20188659]
  8. Nat Rev Neurosci. 2015 Jan;16(1):55-61 [PMID: 25406711]
  9. J Nerv Ment Dis. 2014 Jul;202(7):513-20 [PMID: 24594678]
  10. Cereb Cortex. 2010 Feb;20(2):456-67 [PMID: 19520765]
  11. Sci Rep. 2020 Feb 10;10(1):2214 [PMID: 32042038]
  12. Neurosci Biobehav Rev. 2016 Dec;71:715-728 [PMID: 27810345]
  13. J Comp Neurol. 2005 Jun 13;486(4):295-317 [PMID: 15846786]
  14. Neuropsychobiology. 2004;50(1):89-101 [PMID: 15179026]
  15. Schweiz Arch Neurol Neurochir Psychiatr. 1961;87:365-85 [PMID: 13744546]
  16. Rev Neurosci. 2019 Jul 26;30(6):651-669 [PMID: 30939118]
  17. Brain Res Bull. 2016 Sep;126(Pt 1):89-101 [PMID: 26976063]
  18. Curr Neuropharmacol. 2017;15(7):1032-1042 [PMID: 28625125]
  19. Am J Psychiatry. 2007 Mar;164(3):450-7 [PMID: 17329470]
  20. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4853-8 [PMID: 27071089]
  21. Psychopharmacology (Berl). 2006 May;186(1):93-8 [PMID: 16575552]
  22. J Psychoactive Drugs. 2020 Jul-Aug;52(3):264-272 [PMID: 32362241]
  23. Neuroimage. 2019 Oct 15;200:313-331 [PMID: 31229660]
  24. Nat Rev Neurosci. 2010 Sep;11(9):642-51 [PMID: 20717121]
  25. J Psychopharmacol. 2014 Nov;28(11):983-92 [PMID: 25213996]
  26. J Psychopharmacol. 2018 Jul;32(7):756-769 [PMID: 29938565]
  27. Neuropharmacology. 2011 Sep;61(3):364-81 [PMID: 21256140]
  28. Curr Top Behav Neurosci. 2018;36:283-311 [PMID: 28401525]
  29. J Psychoactive Drugs. 2019 Apr-Jun;51(2):199-208 [PMID: 30849288]
  30. J Neurosci. 2013 Oct 30;33(44):17435-43 [PMID: 24174677]
  31. Curr Biol. 2017 Feb 6;27(3):451-457 [PMID: 28132813]
  32. J Neurosci. 2013 Jun 19;33(25):10544-51 [PMID: 23785166]
  33. Hum Brain Mapp. 2014 Nov;35(11):5442-56 [PMID: 24989126]
  34. Neuropsychopharmacology. 2012 Feb;37(3):630-40 [PMID: 21956447]
  35. Front Hum Neurosci. 2012 Jun 21;6:189 [PMID: 22737119]
  36. Biol Psychiatry. 2010 Dec 1;68(11):1023-30 [PMID: 20855060]
  37. Front Hum Neurosci. 2016 Jun 14;10:269 [PMID: 27378878]
  38. Am J Psychiatry. 2003 Jan;160(1):13-23 [PMID: 12505794]
  39. Front Hum Neurosci. 2014 Feb 24;8:74 [PMID: 24605094]
  40. J Psychopharmacol. 2010 Oct;24(10):1515-24 [PMID: 19304859]
  41. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33495318]
  42. J Psychopharmacol. 2011 Nov;25(11):1434-52 [PMID: 20855349]
  43. Psychol Med. 2016 May;46(7):1379-90 [PMID: 26847689]
  44. Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 [PMID: 18824195]
  45. J Neurosci. 2017 Jan 4;37(1):120-128 [PMID: 28053035]
  46. Neuroimage Clin. 2015 Aug 22;11:53-60 [PMID: 26909323]
  47. Brain Behav. 2019 Feb;9(2):e01207 [PMID: 30644179]
  48. Trends Cogn Sci. 2007 May;11(5):190-2 [PMID: 17360224]
  49. Neuropsychopharmacology. 1997 May;16(5):357-72 [PMID: 9109107]
  50. Psychol Med. 2018 Jul;48(9):1464-1473 [PMID: 28967351]
  51. Front Psychiatry. 2019 Dec 03;10:881 [PMID: 31849730]
  52. Psychopharmacology (Berl). 2020 Oct;237(10):3161-3171 [PMID: 32700023]
  53. Front Pharmacol. 2018 Mar 02;9:172 [PMID: 29568270]
  54. Psychol Med. 2019 Mar;49(4):655-663 [PMID: 29903051]
  55. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1942-7 [PMID: 19171889]
  56. Lancet Psychiatry. 2016 Jul;3(7):619-27 [PMID: 27210031]
  57. Neuroimage. 2002 Jul;16(3 Pt 1):765-80 [PMID: 12169260]
  58. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Jun;3(6):563-571 [PMID: 29550459]
  59. Molecules. 2021 May 15;26(10): [PMID: 34063505]
  60. Neuropharmacology. 2018 Nov;142:263-269 [PMID: 29288686]
  61. J Neurosci. 2013 Sep 25;33(39):15466-76 [PMID: 24068815]
  62. Eur Neuropsychopharmacol. 2021 Sep;50:121-132 [PMID: 34246868]
  63. J Clin Psychiatry. 2006 Nov;67(11):1735-40 [PMID: 17196053]
  64. Molecules. 2021 Apr 22;26(9): [PMID: 33922330]
  65. J Psychopharmacol. 2022 Jan;36(1):12-19 [PMID: 34053342]
  66. Curr Biol. 2016 Apr 25;26(8):1043-50 [PMID: 27085214]
  67. Hum Brain Mapp. 2012 Nov;33(11):2550-60 [PMID: 21922603]
  68. J Psychopharmacol. 2015 Mar;29(3):289-99 [PMID: 25586396]
  69. Pharmacol Ther. 2004 Feb;101(2):131-81 [PMID: 14761703]
  70. J Psychopharmacol. 2016 Dec;30(12):1165-1180 [PMID: 27909164]
  71. Am J Psychiatry. 2007 Oct;164(10):1476-88 [PMID: 17898336]
  72. Nat Med. 2021 Jun;27(6):1025-1033 [PMID: 33972795]
  73. Neuropsychopharmacology. 2016 Oct;41(11):2638-46 [PMID: 27249781]
  74. J R Soc Interface. 2014 Dec 6;11(101):20140873 [PMID: 25401177]
  75. Psychopharmacology (Berl). 2018 Nov;235(11):3137-3148 [PMID: 30196397]
  76. Transl Psychiatry. 2017 Apr 4;7(4):e1084 [PMID: 28375205]
  77. Int J Neuropsychopharmacol. 2017 Sep 1;20(9):747-757 [PMID: 28637246]
  78. Ther Adv Psychopharmacol. 2019 Apr 26;9:2045125319845774 [PMID: 31065350]
  79. Arch Neurol. 2009 Jul;66(7):877-83 [PMID: 19597090]
  80. Neuroimage. 2020 Sep;218:116980 [PMID: 32454209]
  81. J Neurosci. 2017 Nov 22;37(47):11390-11405 [PMID: 29042433]
  82. Sci Rep. 2017 Oct 13;7(1):13187 [PMID: 29030624]
  83. PLoS One. 2015 Feb 18;10(2):e0118143 [PMID: 25693169]
  84. Transl Psychiatry. 2021 Apr 8;11(1):209 [PMID: 33833225]
  85. Reg Anesth Pain Med. 2020 Jul;45(7):486-494 [PMID: 32371500]
  86. Epilepsy Behav. 2000 Oct;1(5):356-61 [PMID: 12609167]
  87. J Psychiatry Neurosci. 2012 Jan;37(1):17-27 [PMID: 21693094]
  88. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  89. Psychopharmacology (Berl). 2021 Jul;238(7):1899-1910 [PMID: 33694031]
  90. Dialogues Clin Neurosci. 2011;13(4):453-61 [PMID: 22275850]
  91. Proc Natl Acad Sci U S A. 2016 May 3;113(18):5119-24 [PMID: 27091970]
  92. Neuroimage. 2016 Aug 15;137:70-85 [PMID: 27179606]
  93. Neuroimage Clin. 2017 Oct 19;17:222-231 [PMID: 29159039]
  94. Psychopharmacology (Berl). 2015 Oct;232(19):3663-76 [PMID: 26231498]
  95. Biol Psychiatry. 2015 Oct 15;78(8):544-53 [PMID: 25575620]
  96. Front Synaptic Neurosci. 2020 Aug 21;12:34 [PMID: 32973482]
  97. J Psychoactive Drugs. 2019 Apr-Jun;51(2):123-134 [PMID: 30905276]
  98. J Neurosci. 2014 Apr 16;34(16):5399-405 [PMID: 24741031]
  99. Transl Neurosci. 2016 May 9;7(1):35-49 [PMID: 28123820]
  100. Cortex. 2016 Oct;83:139-44 [PMID: 27533133]
  101. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2138-43 [PMID: 22308440]
  102. Neuroimage. 2021 Feb 15;227:117653 [PMID: 33338615]
  103. Neuropsychopharmacology. 1999 May;20(5):424-33 [PMID: 10192823]
  104. Sci Rep. 2016 Oct 21;6:35484 [PMID: 27765947]
  105. Nat Neurosci. 2004 Nov;7(11):1271-8 [PMID: 15494727]
  106. J Neurosci. 2018 Apr 4;38(14):3603-3611 [PMID: 29555857]
  107. J Psychopharmacol. 2015 Jan;29(1):57-68 [PMID: 25389218]

Word Cloud

Created with Highcharts 10.0.0regionseffectsbrainreceptorsreceptorcortexpsychedelicsactivationpatternsneuraltryptaminepotentialtherapeuticmolecularserotonin5HT2Aimagingstudiessubstancesclassfunctionalconnectivity5HT1A/5HT2Adensityvisualprefrontalinvolvedtheorymindalsofoundavailableneuromodulatory5-hydroxytryptamineincreasinginterestpsychoactivedrugsparticularincrementedproposalbenefitsbasedmimicrywidelybelievedactmainlydistinctsystemsfullyunderstoodperformedquantitativemeta-analysisinvestigatewithinegLSDPsilocybinDMTAyahuascapointviewinvestigatedquestionwhetherchangesmaplargerbindingexpectedindolaeminehallucinogensspiteoftenreportedemphasis5HT2ARindeedfindchangedand/ormatchhighnamelyBA19fusiformBA37dorsalanteriorposteriorcingulatemedialsurpramarginalgyrustemporalrich5HT1AHoweverrelevantdorsolateralMoreovermanyabove-mentionedsignificantPEToccupancystillquitescarceprecludingmetanalyticapproachFinallyrobusteffectrightamygdalasumevidencepointstowardsstrongkeymentalimageryaffectiveregulationpointingapplicationsEffectsTryptaminePsychedelicsBrain:meta-AnalysisFunctionalReviewMolecularImagingStudies1A2Acognitionmagneticresonancepositronemissiontomographypsychedelicagents

Similar Articles

Cited By