Oil palm in the 2020s and beyond: challenges and solutions.

Denis J Murphy, Kirstie Goggin, R Russell M Paterson
Author Information
  1. Denis J Murphy: School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK.
  2. Kirstie Goggin: School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK.
  3. R Russell M Paterson: CEB-Centre of Biological Engineering, Gualtar Campus, University of Minho, 4710-057 Braga, Portugal.

Abstract

BACKGROUND: Oil palm, , is by far the most important global oil crop, supplying about 40% of all traded vegetable oil. Palm oils are key dietary components consumed daily by over three billion people, mostly in Asia, and also have a wide range of important non-food uses including in cleansing and sanitizing products.
MAIN BODY: Oil palm is a perennial crop with a > 25-year life cycle and an exceptionally low land footprint compared to annual oilseed crops. Oil palm crops globally produce an annual 81 million tonnes (Mt) of oil from about 19 million hectares (Mha). In contrast, the second and third largest vegetable oil crops, soybean and rapeseed, yield a combined 84 Mt oil but occupy over 163 Mha of increasingly scarce arable land. The oil palm crop system faces many challenges in the 2020s. These include increasing incidence of new and existing pests/diseases and a general lack of climatic resilience, especially relating to elevated temperatures and increasingly erratic rainfall patterns, plus downstream issues relating to supply chains and consumer sentiment. This review surveys the oil palm sector in the 2020s and beyond, its major challenges and options for future progress.
CONCLUSIONS: Oil palm crop production faces many future challenges, including emerging threats from climate change and pests and diseases. The inevitability of climate change requires more effective international collaboration for its reduction. New breeding and management approaches are providing the promise of improvements, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance, and greater climatic resilience.

Keywords

References

  1. Environ Sci Pollut Res Int. 2021 May;28(17):21193-21203 [PMID: 33410008]
  2. Environ Sci Pollut Res Int. 2020 Mar;27(9):9760-9770 [PMID: 31925690]
  3. J Invertebr Pathol. 2005 May;89(1):85-90 [PMID: 16039309]
  4. BMC Res Notes. 2019 Sep 24;12(1):631 [PMID: 31551084]
  5. Trends Ecol Evol. 2008 Oct;23(10):538-45 [PMID: 18775582]
  6. PLoS One. 2012;7(11):e49142 [PMID: 23145100]
  7. Sci Adv. 2017 May 17;3(5):e1603055 [PMID: 28560343]
  8. 3 Biotech. 2020 Jul;10(7):306 [PMID: 32566443]
  9. Sci Rep. 2015 Sep 24;5:14457 [PMID: 26399638]
  10. J Environ Manage. 2021 Dec 15;300:113785 [PMID: 34562818]
  11. J Appl Ecol. 2019 Oct;56(10):2274-2285 [PMID: 31762491]
  12. PLoS One. 2014 Jul 16;9(7):e101654 [PMID: 25029192]
  13. Genes (Basel). 2020 Jul 21;11(7): [PMID: 32708151]
  14. BMC Plant Biol. 2019 Dec 3;19(1):533 [PMID: 31795941]
  15. Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):121-126 [PMID: 29229857]
  16. Conserv Biol. 2008 Dec;22(6):1471-6 [PMID: 18759775]
  17. Ecol Evol. 2017 Nov 30;8(1):452-461 [PMID: 29321885]
  18. Bull World Health Organ. 2019 Feb 1;97(2):118-128 [PMID: 30728618]
  19. Ann Intern Med. 2014 Mar 18;160(6):398-406 [PMID: 24723079]
  20. Plant Sci. 2021 Mar;304:110731 [PMID: 33568284]
  21. Nature. 2008 May 15;453(7193):353-7 [PMID: 18480817]
  22. Sci Rep. 2016 Sep 08;6:32017 [PMID: 27605501]
  23. Front Plant Sci. 2019 Oct 15;10:1263 [PMID: 31681369]
  24. Nature. 2020 Aug;584(7819):109-114 [PMID: 32669710]
  25. Sci Rep. 2015 Jul 27;5:12611 [PMID: 26211732]
  26. Microorganisms. 2019 Jan 19;7(1): [PMID: 30669456]
  27. Biol Rev Camb Philos Soc. 2017 Aug;92(3):1539-1569 [PMID: 27511961]
  28. Sci Total Environ. 2019 Feb 10;650(Pt 2):1858-1871 [PMID: 30290336]
  29. Fungal Biol. 2017 Jun - Jul;121(6-7):529-540 [PMID: 28606348]
  30. Mol Breed. 2021 Sep 5;41(9):53 [PMID: 37309398]
  31. Sci Rep. 2020 Jun 19;10(1):9998 [PMID: 32561804]
  32. Viruses. 2019 May 09;11(5): [PMID: 31075860]
  33. PLoS One. 2012;7(10):e48021 [PMID: 23110162]
  34. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  35. Nat Plants. 2020 Dec;6(12):1418-1426 [PMID: 33299148]
  36. Sci Rep. 2019 Apr 29;9(1):6619 [PMID: 31036825]
  37. Sci Rep. 2019 Feb 13;9(1):1899 [PMID: 30760842]
  38. BMC Genomics. 2016 Jan 19;17:66 [PMID: 26781612]
  39. Front Plant Sci. 2015 Mar 27;6:190 [PMID: 25870604]

Word Cloud

Created with Highcharts 10.0.0palmoilOilcropchallengescrops2020schangeimportantvegetableincludinglandannualmillionMtMhaincreasinglyfacesmanyclimaticresiliencerelatingfutureclimateBACKGROUND: farglobalsupplying40%tradedPalmoilskeydietarycomponentsconsumeddailythreebillionpeoplemostlyAsiaalsowiderangenon-foodusescleansingsanitizingproductsMAINBODY:perenniala > 25-yearlifecycleexceptionallylowfootprintcomparedoilseedgloballyproduce81tonnes19hectarescontrastsecondthirdlargestsoybeanrapeseedyieldcombined84occupy163scarcearablesystemincludeincreasingincidencenewexistingpests/diseasesgenerallackespeciallyelevatedtemperatureserraticrainfallpatternsplusdownstreamissuessupplychainsconsumersentimentreviewsurveyssectorbeyondmajoroptionsprogressCONCLUSIONS:productionemergingthreatspestsdiseasesinevitabilityrequireseffectiveinternationalcollaborationreductionNewbreedingmanagementapproachesprovidingpromiseimprovementsmuchhigheryieldingvarietiesimprovedprofilesenhanceddiseaseresistancegreaterbeyond:solutionsBasalstemrotBreedingClimateDiseasesModellingPhytophthoraSustainability

Similar Articles

Cited By