Rigorous treatment of pairwise and many-body electrostatic interactions among dielectric spheres at the Debye-Hückel level.

O I Obolensky, T P Doerr, Yi-Kuo Yu
Author Information
  1. O I Obolensky: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
  2. T P Doerr: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
  3. Yi-Kuo Yu: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA. yyu@ncbi.nlm.nih.gov. ORCID

Abstract

Electrostatic interactions among colloidal particles are often described using the venerable (two-particle) Derjaguin-Landau-Verwey-Overbeek (DLVO) approximation and its various modifications. However, until the recent development of a many-body theory exact at the Debye-Hückel level (Yu in Phys Rev E 102:052404, 2020), it was difficult to assess the errors of such approximations and impossible to assess the role of many-body effects. By applying the exact Debye-Hückel level theory, we quantify the errors inherent to DLVO and the additional errors associated with replacing many-particle interactions by the sum of pairwise interactions (even when the latter are calculated exactly). In particular, we show that: (1) the DLVO approximation does not provide sufficient accuracy at shorter distances, especially when there is an asymmetry in charges and/or sizes of interacting dielectric spheres; (2) the pairwise approximation leads to significant errors at shorter distances and at large and moderate Debye lengths and also gets worse with increasing asymmetry in the size of the spheres or magnitude or placement of the charges. We also demonstrate that asymmetric dielectric screening, i.e., the enhanced repulsion between charged dielectric bodies immersed in media with high dielectric constant, is preserved in the presence of free ions in the medium.

References

  1. J Chem Phys. 2012 Sep 14;137(10):104910 [PMID: 22979893]
  2. Europhys Lett. 2016;116(2): [PMID: 31631925]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011402 [PMID: 12241359]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041907 [PMID: 19518256]
  5. BMC Biophys. 2012 May 14;5:9 [PMID: 22583952]
  6. J Chem Theory Comput. 2006 May;2(3):541-55 [PMID: 26626662]
  7. Phys Rev E. 2020 Mar;101(3-1):032605 [PMID: 32290023]
  8. J Chem Phys. 2013 Jun 21;138(23):234705 [PMID: 23802974]
  9. J Colloid Interface Sci. 2016 May 1;469:237-241 [PMID: 26896771]
  10. Phys Rev E. 2017 Dec;96(6-1):062414 [PMID: 29347333]
  11. Biophys J. 1975 Feb;15(2 Pt 1):143-62 [PMID: 1111632]
  12. J Colloid Interface Sci. 2011 Feb 1;354(1):417-20 [PMID: 21131001]
  13. Small. 2020 Apr;16(14):e2000442 [PMID: 32181972]
  14. J Chem Phys. 2014 Feb 21;140(7):074107 [PMID: 24559338]
  15. Langmuir. 2020 Jan 14;36(1):47-54 [PMID: 31834805]
  16. Curr Opin Struct Biol. 2006 Apr;16(2):142-51 [PMID: 16540310]
  17. J Chem Phys. 2016 Aug 28;145(8):084103 [PMID: 27586900]
  18. J Chem Phys. 2010 Jul 14;133(2):024105 [PMID: 20632746]
  19. J Phys Condens Matter. 2010 Mar 17;22(10):104104 [PMID: 21389438]
  20. J Chem Phys. 2014 Feb 14;140(6):064903 [PMID: 24527936]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 1):061902 [PMID: 16906859]
  22. J Phys Colloid Chem. 1947 May;51(3):631-6 [PMID: 20238663]
  23. J Chem Phys. 2019 Jul 14;151(2):024112 [PMID: 31301698]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011912 [PMID: 23005457]
  25. J Colloid Interface Sci. 1996 Dec 1;184(1):268-78 [PMID: 8954663]
  26. J Chem Phys. 2019 Jan 28;150(4):044901 [PMID: 30709241]
  27. Soft Matter. 2018 Jul 4;14(26):5480-5487 [PMID: 29926874]
  28. Phys Rev E. 2020 Nov;102(5-1):052404 [PMID: 33327080]
  29. J Chem Phys. 2020 Jan 14;152(2):024121 [PMID: 31941309]
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031403 [PMID: 17930243]
  31. Phys Chem Chem Phys. 2016 Feb 17;18(8):5883-95 [PMID: 26841284]
  32. Am J Phys. 2014 May 1;82(5):460-465 [PMID: 25125701]
  33. Phys Rev E. 2019 Jul;100(1-1):012401 [PMID: 31499794]
  34. J Chem Phys. 2009 Feb 21;130(7):074502 [PMID: 19239297]

Grants

  1. ZIA LM200601/Intramural NIH HHS

MeSH Term

Ions
Models, Chemical
Static Electricity

Chemicals

Ions

Word Cloud

Created with Highcharts 10.0.0dielectricinteractionserrorsDLVOapproximationmany-bodyDebye-HückellevelpairwisespheresamongtheoryexactassessshorterdistancesasymmetrychargesalsoElectrostaticcolloidalparticlesoftendescribedusingvenerabletwo-particleDerjaguin-Landau-Verwey-OverbeekvariousmodificationsHoweverrecentdevelopmentYuPhysRevE102:0524042020difficultapproximationsimpossibleroleeffectsapplyingquantifyinherentadditionalassociatedreplacingmany-particlesumevenlattercalculatedexactlyparticularshowthat:1providesufficientaccuracyespeciallyand/orsizesinteracting2leadssignificantlargemoderateDebyelengthsgetsworseincreasingsizemagnitudeplacementdemonstrateasymmetricscreeningieenhancedrepulsionchargedbodiesimmersedmediahighconstantpreservedpresencefreeionsmediumRigoroustreatmentelectrostatic

Similar Articles

Cited By (2)