Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family.

Nguyet Le, Timothy M Hufford, Jong S Park, Rachel M Brewster
Author Information
  1. Nguyet Le: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
  2. Timothy M Hufford: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
  3. Jong S Park: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
  4. Rachel M Brewster: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA. ORCID

Abstract

Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.

Keywords

References

  1. Neurobiol Dis. 2004 Jun;16(1):48-58 [PMID: 15207261]
  2. Nat Protoc. 2008;3(1):59-69 [PMID: 18193022]
  3. Free Radic Biol Med. 2018 Mar;117:76-89 [PMID: 29373843]
  4. Turk J Med Sci. 2019 Oct 24;49(5):1450-1454 [PMID: 31651111]
  5. Trends Pharmacol Sci. 2012 Apr;33(4):207-14 [PMID: 22398146]
  6. Gene. 2004 Jan 7;324:149-58 [PMID: 14693380]
  7. Environ Health Perspect. 2002 Oct;110 Suppl 5:783-8 [PMID: 12429530]
  8. Ann Anat. 2019 Jan;221:148-155 [PMID: 30312765]
  9. Carcinogenesis. 2013 Sep;34(9):1943-54 [PMID: 23671130]
  10. Pflugers Arch. 2005 Sep;450(6):363-71 [PMID: 16007431]
  11. Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):1-15 [PMID: 24099156]
  12. Nat Med. 2011 Nov 07;17(11):1391-401 [PMID: 22064429]
  13. Int J Dev Biol. 2015;59(10-12):511-7 [PMID: 26864492]
  14. Mol Cell Proteomics. 2007 Apr;6(4):575-88 [PMID: 17220478]
  15. Oncotarget. 2016 Aug 30;7(35):57442-57451 [PMID: 27447861]
  16. Carcinogenesis. 2008 Jan;29(1):2-8 [PMID: 17916902]
  17. EMBO J. 2003 Feb 3;22(3):580-7 [PMID: 12554658]
  18. Physiol Genomics. 2003 Apr 16;13(2):97-106 [PMID: 12700360]
  19. Exp Transl Stroke Med. 2016 Dec 7;8:9 [PMID: 27980710]
  20. J Biol Chem. 2020 Jul 24;295(30):10493-10505 [PMID: 32503843]
  21. Biol Chem. 2013 Apr;394(4):507-17 [PMID: 23324384]
  22. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jun;147(2):263-76 [PMID: 17035057]
  23. BMC Mol Biol. 2008 Nov 12;9:102 [PMID: 19014500]
  24. Neurobiol Dis. 2004 Nov;17(2):290-9 [PMID: 15474366]
  25. Folia Neuropathol. 2011;49(2):78-87 [PMID: 21845535]
  26. J Neurochem. 2009 May;109 Suppl 1:133-8 [PMID: 19393019]
  27. J Renal Inj Prev. 2015 Jun 01;4(2):20-7 [PMID: 26060833]
  28. Curr Opin Cell Biol. 2001 Apr;13(2):167-71 [PMID: 11248550]
  29. FASEB J. 2001 Dec;15(14):2613-22 [PMID: 11726537]
  30. Neurogenetics. 2019 Oct;20(4):173-186 [PMID: 31485792]
  31. J Biol Chem. 2017 Oct 13;292(41):16825-16832 [PMID: 28842498]
  32. Genom Data. 2015 Aug 04;6:83-8 [PMID: 26697342]
  33. Oncotarget. 2017 Dec 28;9(12):10470-10482 [PMID: 29535820]
  34. Biomolecules. 2020 Jan 06;10(1): [PMID: 31935861]
  35. Redox Biol. 2015 Dec;6:524-551 [PMID: 26484802]
  36. Genes Dis. 2019 Jan 17;6(4):448-454 [PMID: 31832525]
  37. J Cell Sci. 2014 Jul 15;127(Pt 14):3116-30 [PMID: 24829151]
  38. Radiother Oncol. 2011 Jun;99(3):379-84 [PMID: 21719133]
  39. PLoS One. 2007 Sep 05;2(9):e844 [PMID: 17786215]
  40. J Neurosci. 2000 Nov 1;20(21):7994-8004 [PMID: 11050120]
  41. Semin Cell Dev Biol. 2005 Aug-Oct;16(4-5):487-501 [PMID: 15896987]
  42. Am J Hum Genet. 2000 Jul;67(1):47-58 [PMID: 10831399]
  43. Oncol Rep. 2017 Jun;37(6):3625-3634 [PMID: 28498432]
  44. Elife. 2017 Nov 16;6: [PMID: 29144233]
  45. J Biol Chem. 2004 Apr 30;279(18):18623-32 [PMID: 14985363]
  46. Mol Biol Rep. 2013 May;40(5):3723-9 [PMID: 23526365]
  47. J Exp Biol. 2007 May;210(Pt 10):1700-14 [PMID: 17488933]
  48. BMC Bioinformatics. 2006 Mar 09;7:123 [PMID: 16526949]
  49. Brain Res Brain Res Rev. 1991 Sep-Dec;16(3):283-300 [PMID: 1665097]
  50. Clin Chest Med. 2015 Jun;36(2):235-48, viii [PMID: 26024602]
  51. Proc Am Thorac Soc. 2010 Feb;7(1):65-70 [PMID: 20160150]
  52. Prog Neurobiol. 2000 Oct;62(3):215-49 [PMID: 10840148]
  53. Biochem Biophys Res Commun. 2003 Sep 12;309(1):52-7 [PMID: 12943662]
  54. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7331-5 [PMID: 11404478]
  55. Biochim Biophys Acta Mol Basis Dis. 2019 Sep 1;1865(9):2094-2110 [PMID: 30981813]
  56. RNA Biol. 2018;15(12):1487-1498 [PMID: 30497328]
  57. Front Physiol. 2016 Aug 02;7:314 [PMID: 27531981]
  58. Biol Bull. 2019 Aug;237(1):48-62 [PMID: 31441698]
  59. Circ Res. 2004 Jul 23;95(2):146-53 [PMID: 15192019]
  60. J Exp Biol. 2014 Apr 1;217(Pt 7):1024-39 [PMID: 24671961]
  61. Curr Pharm Des. 2020;26(34):4246-4260 [PMID: 32640953]
  62. J Cereb Blood Flow Metab. 2000 Sep;20(9):1294-300 [PMID: 10994850]
  63. Mutat Res. 2008 Apr 2;640(1-2):174-9 [PMID: 18294659]
  64. Cell Mol Life Sci. 2014 Sep;71(18):3569-82 [PMID: 24858415]
  65. Hear Res. 2015 Sep;327:58-68 [PMID: 25987500]
  66. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  67. PLoS One. 2014 Jan 31;9(1):e87268 [PMID: 24498060]
  68. J Biol Chem. 2009 Jun 19;284(25):16767-16775 [PMID: 19386601]
  69. Dev Biol. 2008 May 15;317(2):486-96 [PMID: 18407257]
  70. Neurochirurgie. 2015 Apr-Jun;61(2-3):77-84 [PMID: 25908646]
  71. BMC Biotechnol. 2005 Dec 07;5:31 [PMID: 16336641]
  72. Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1187-95 [PMID: 25350978]
  73. Blood. 2016 Dec 29;128(26):3052-3060 [PMID: 27827822]
  74. Am J Physiol Regul Integr Comp Physiol. 2020 Jan 1;318(1):R89-R97 [PMID: 31692366]
  75. J Immunol. 2007 Jun 1;178(11):7042-53 [PMID: 17513753]
  76. Biochem J. 2004 Dec 15;384(Pt 3):477-88 [PMID: 15461589]
  77. J Appl Physiol (1985). 2015 Nov 15;119(10):1157-63 [PMID: 25977449]
  78. Cell. 2015 Apr 23;161(3):595-609 [PMID: 25892225]
  79. Int J Mol Sci. 2019 Jul 03;20(13): [PMID: 31277312]
  80. Oncol Rep. 2014 May;31(5):2279-85 [PMID: 24626771]
  81. J Appl Physiol (1985). 2017 Nov 1;123(5):1362-1370 [PMID: 28819001]
  82. J Exp Biol. 2018 Jul 4;221(Pt 13): [PMID: 29973414]
  83. Proteins. 2002 May 1;47(2):163-8 [PMID: 11933063]
  84. Basic Res Cardiol. 2016 Mar;111(2):11 [PMID: 26780215]
  85. Brain Res Dev Brain Res. 2002 Apr 30;135(1-2):45-53 [PMID: 11978392]
  86. Proc Biol Sci. 2014 Jul 7;281(1786): [PMID: 24850928]
  87. Blood. 2011 Jun 9;117(23):e207-17 [PMID: 21447827]
  88. Nucleic Acids Res. 2009 Aug;37(14):4587-602 [PMID: 19491311]
  89. PLoS One. 2011;6(5):e19713 [PMID: 21603650]
  90. Biol Pharm Bull. 2004 May;27(5):624-7 [PMID: 15133234]
  91. Sci STKE. 2005 Oct 18;2005(306):re12 [PMID: 16234508]
  92. J Fish Biol. 2016 Jun;88(6):2095-110 [PMID: 27126589]
  93. J Cell Sci. 2013 Sep 1;126(Pt 17):3961-71 [PMID: 23813961]
  94. J Clin Invest. 2013 Sep;123(9):3664-71 [PMID: 23999440]
  95. Mayo Clin Proc. 2006 Sep;81(9):1232-6 [PMID: 16970220]
  96. Genome Biol. 2009;10(10):R113 [PMID: 19828020]
  97. Genomics. 2001 Apr 1;73(1):86-97 [PMID: 11352569]
  98. Exp Cell Res. 2017 Jul 15;356(2):173-181 [PMID: 28219680]
  99. Integr Comp Biol. 2014 Jul;54(2):238-49 [PMID: 24748600]
  100. PLoS Med. 2006 Mar;3(3):e47 [PMID: 16417408]
  101. Dev Dyn. 2008 Jul;237(7):1780-8 [PMID: 18521954]
  102. J Pineal Res. 2016 Oct;61(3):253-78 [PMID: 27500468]
  103. J Biol Chem. 2006 Feb 3;281(5):2764-72 [PMID: 16314423]
  104. Cell Physiol Biochem. 2008;21(1-3):239-50 [PMID: 18209490]
  105. J Histochem Cytochem. 2008 Feb;56(2):175-82 [PMID: 17998568]
  106. FEBS J. 2021 Jun;288(11):3507-3529 [PMID: 33305529]
  107. J Physiol. 2004 Jul 1;558(Pt 1):5-30 [PMID: 15131240]
  108. Ann N Y Acad Sci. 2009 Oct;1177:169-77 [PMID: 19845619]
  109. Oncogene. 2017 Jul 27;36(30):4323-4335 [PMID: 28346422]
  110. Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C350-60 [PMID: 26179603]
  111. Med Hypotheses. 2006;67(4):892-9 [PMID: 16757123]
  112. Genes Cancer. 2011 Dec;2(12):1117-33 [PMID: 22866203]
  113. PLoS One. 2013 May 31;8(5):e65058 [PMID: 23741453]
  114. BMC Genomics. 2015 Nov 11;16:923 [PMID: 26559940]
  115. FASEB J. 2010 Nov;24(11):4153-66 [PMID: 20667976]
  116. Carcinogenesis. 2006 Dec;27(12):2355-66 [PMID: 16920733]
  117. J Biol Chem. 2011 Apr 8;286(14):12450-60 [PMID: 21247902]
  118. Angiogenesis. 2009;12(4):339-54 [PMID: 19760510]
  119. Radiother Oncol. 2005 Aug;76(2):177-86 [PMID: 16098621]
  120. BMC Genet. 2004 Sep 02;5:27 [PMID: 15341671]
  121. Sci Rep. 2016 Nov 04;6:36590 [PMID: 27811999]
  122. Cell Tissue Res. 2006 Jul;325(1):67-76 [PMID: 16520977]
  123. FASEB J. 2021 Nov;35(11):e21961 [PMID: 34665878]
  124. J Dev Biol. 2020 Jan 31;8(1): [PMID: 32023839]
  125. Sci Rep. 2016 Aug 17;6:31355 [PMID: 27531581]

Grants

  1. R21 HD089476/NICHD NIH HHS
  2. R25 GM055036/NIGMS NIH HHS
  3. T32 GM066706/NIGMS NIH HHS
  4. T32 GM144876/NIGMS NIH HHS

MeSH Term

Animals
Cell Hypoxia
Embryo, Nonmammalian
Gene Expression Regulation
Hypoxia
Intracellular Signaling Peptides and Proteins
Mitochondria
Oxidative Stress
Oxygen
Zebrafish
Zebrafish Proteins

Chemicals

Intracellular Signaling Peptides and Proteins
Zebrafish Proteins
ndrg1a protein, zebrafish
Oxygen

Word Cloud

Created with Highcharts 10.0.0hypoxiaoxygenexpressioncellsfamilyndrgsgeneorganismsATPmechanismslevelsembryosanoxiaN-mycresponsenormalregulationshowzebrafishtranscriptobservedregulatedndrg1aManyrelygeneratecellularenergyadenosinetriphosphatesevereproductiondecreasesleadingcelldamagedeathConverselyexcessivecausesoxidativestressequallydamagingmitigatepathologicaloutcomesevolvedadaptfluctuationsZebrafishremarkablyhypoxia-tolerantsurvivingzerohourshypometabolicenergy-conservingstatebeginunravelunderlyinganalyzedistributionDownstreamRegulatedGenendrgndrg1-4transcriptionalgenesprimarilystudiedcancerhencelittleunderstoodfunctionusingsituhybridizationexpressedmetabolicallydemandingorgansembryobrainkidneyheartinvestigatewhetherhypoxia-responsiveexposeddifferentdurationsseverityanalyzeddifferentiallyrobustninefoldincreasefollowingprolongedtreatmentresulteddenovotissuesnormoxicconditionschangesNdrg1aproteinpost-reoxygenationfindingsprovideentrypointunderstandingroleconservedadaptationreoxygenationDifferentialhypoxia-mediateddownstreamNDRGhypometabolism

Similar Articles

Cited By