Genetic factors in precocious puberty.

Young Suk Shim, Hae Sang Lee, Jin Soon Hwang
Author Information
  1. Young Suk Shim: Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea.
  2. Hae Sang Lee: Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea.
  3. Jin Soon Hwang: Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea.

Abstract

Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and noncoding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.

Keywords

References

  1. Clin Epigenetics. 2018 Nov 22;10(1):146 [PMID: 30466473]
  2. Indian J Endocrinol Metab. 2011 Sep;15 Suppl 3:S172-9 [PMID: 22029021]
  3. Development. 2011 Sep;138(17):3593-612 [PMID: 21828089]
  4. Cell. 1994 Sep 9;78(5):761-71 [PMID: 8087844]
  5. Addiction. 2013 Oct;108(10):1845-54 [PMID: 23680010]
  6. Ann Med. 2003;35(4):244-55 [PMID: 12846266]
  7. Front Endocrinol (Lausanne). 2019 Oct 04;10:677 [PMID: 31636607]
  8. J Pediatr Endocrinol Metab. 2017 May 24;30(6):663-667 [PMID: 28525351]
  9. Zhonghua Yu Fang Yi Xue Za Zhi. 2019 Mar 6;53(3):303-308 [PMID: 30841672]
  10. Endocrinology. 2008 Sep;149(9):4605-14 [PMID: 18483150]
  11. Science. 2008 Apr 4;320(5872):97-100 [PMID: 18292307]
  12. N Engl J Med. 2013 Jun 27;368(26):2467-75 [PMID: 23738509]
  13. Endocrinology. 2010 Sep;151(9):4494-503 [PMID: 20573725]
  14. Eur J Pediatr. 2010 Jan;169(1):89-94 [PMID: 19504269]
  15. Pharmacol Rev. 1998 Mar;50(1):143-50 [PMID: 9549761]
  16. N Engl J Med. 2008 May 29;358(22):2366-77 [PMID: 18509122]
  17. Front Oncol. 2018 Nov 26;8:550 [PMID: 30534535]
  18. J Biol Chem. 2001 Sep 14;276(37):34631-6 [PMID: 11457843]
  19. Gynecol Endocrinol. 2019 Aug;35(8):732-736 [PMID: 30806524]
  20. Int J Endocrinol. 2019 Oct 03;2019:9879367 [PMID: 31687022]
  21. Arch Dis Child. 1969 Jun;44(235):291-303 [PMID: 5785179]
  22. J Clin Endocrinol Metab. 2016 Jun;101(6):2588-93 [PMID: 27057785]
  23. Hum Reprod. 2021 Jan 25;36(2):506-518 [PMID: 33313884]
  24. Exp Clin Endocrinol Diabetes. 2019 Apr;127(4):234-239 [PMID: 29506309]
  25. Hum Genome Var. 2019 Jan 21;6:7 [PMID: 30675365]
  26. Front Endocrinol (Lausanne). 2019 Feb 08;10:48 [PMID: 30800097]
  27. Nat Genet. 2009 Jun;41(6):648-50 [PMID: 19448620]
  28. J Neurosci. 2009 Oct 14;29(41):12815-23 [PMID: 19828794]
  29. J Pediatr Endocrinol Metab. 2017 Oct 26;30(11):1197-1201 [PMID: 28988223]
  30. Endocrinology. 2010 Sep;151(9):4428-36 [PMID: 20573723]
  31. Horm Res Paediatr. 2017;87(2):88-94 [PMID: 27931036]
  32. Am J Dis Child. 1964 May;107:495-515 [PMID: 14120415]
  33. Mol Cell. 2011 Nov 4;44(3):361-72 [PMID: 22055183]
  34. Endocrinol Metab Clin North Am. 1991 Mar;20(1):1-14 [PMID: 2029881]
  35. Hum Reprod. 2018 Nov 1;33(11):2043-2050 [PMID: 30312405]
  36. J Clin Endocrinol Metab. 2011 Jan;96(1):E125-9 [PMID: 20962026]
  37. J Clin Endocrinol Metab. 2021 Mar 25;106(4):1041-1050 [PMID: 33383582]
  38. Front Endocrinol (Lausanne). 2019 Dec 13;10:864 [PMID: 31920975]
  39. Eur J Neurosci. 2010 Jun;31(11):1984-98 [PMID: 20529119]
  40. J Korean Med Sci. 2020 Dec 21;35(49):e406 [PMID: 33350182]
  41. Hum Mol Genet. 1999 May;8(5):795-803 [PMID: 10196368]
  42. J Neuroendocrinol. 1995 Jan;7(1):63-7 [PMID: 7735299]
  43. J Clin Endocrinol Metab. 2017 May 1;102(5):1557-1567 [PMID: 28324015]
  44. J Clin Invest. 2020 Aug 3;130(8):4486-4500 [PMID: 32407292]
  45. Int J Environ Res Public Health. 2017 Nov 13;14(11): [PMID: 29137163]
  46. J Endocrinol Invest. 2017 Aug;40(8):789-802 [PMID: 28251550]
  47. Nat Genet. 2009 Mar;41(3):354-358 [PMID: 19079066]
  48. J Clin Res Pediatr Endocrinol. 2018 Feb 28;10(3):223-229 [PMID: 29537379]
  49. Int J Cancer. 2013 Jun 1;132(11):2619-29 [PMID: 23090881]
  50. J Pediatr Endocrinol Metab. 2008 Oct;21(10):951-61 [PMID: 19209617]
  51. J Pediatr Endocrinol Metab. 2015 Jan;28(1-2):65-71 [PMID: 25153567]
  52. J Endocr Soc. 2019 Mar 25;3(5):979-995 [PMID: 31041429]
  53. Biochim Biophys Acta. 2011 Jun;1813(6):1153-64 [PMID: 21419176]
  54. Ital J Pediatr. 2019 Jan 11;45(1):10 [PMID: 30635063]
  55. Horm Res Paediatr. 2014;81(3):177-81 [PMID: 24434351]
  56. Reproduction. 2016 Oct 17;153(1):R1-R14 [PMID: 27754872]
  57. J Pediatr Endocrinol Metab. 2020 Jul 5;: [PMID: 32623379]
  58. J Pediatr. 2016 Dec;179:263-265 [PMID: 27640350]
  59. Trends Genet. 2004 Aug;20(8):350-8 [PMID: 15262407]
  60. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6179-84 [PMID: 10811877]
  61. Am J Epidemiol. 1993 Aug 15;138(4):217-24 [PMID: 8356963]
  62. Pediatrics. 2008 Feb;121 Suppl 3:S172-91 [PMID: 18245511]
  63. N Engl J Med. 2003 Nov 20;349(21):2042-54 [PMID: 14627790]
  64. PLoS One. 2012;7(4):e36134 [PMID: 22563444]
  65. N Engl J Med. 2008 Feb 14;358(7):709-15 [PMID: 18272894]
  66. Nat Commun. 2018 Jan 4;9(1):57 [PMID: 29302059]
  67. Regul Pept. 2001 Apr 20;98(3):97-104 [PMID: 11231038]
  68. Cell. 2007 Feb 9;128(3):505-518 [PMID: 17289570]
  69. Front Neuroendocrinol. 2015 Jan;36:90-107 [PMID: 25171849]
  70. Hum Reprod Update. 2001 May-Jun;7(3):292-302 [PMID: 11392376]
  71. Ann Hum Biol. 2009 Nov-Dec;36(6):680-94 [PMID: 19919503]
  72. Mol Cell Endocrinol. 2019 Dec 1;498:110578 [PMID: 31518609]
  73. Hum Biol. 1995 Oct;67(5):739-53 [PMID: 8543288]
  74. Mol Cell Endocrinol. 2011 Oct 22;346(1-2):84-90 [PMID: 21664234]
  75. Mol Cell Endocrinol. 2020 Dec 1;518:111031 [PMID: 32956708]
  76. Horm Res Paediatr. 2012;78(3):144-50 [PMID: 22964795]
  77. J Clin Endocrinol Metab. 2019 Jun 1;104(6):2112-2120 [PMID: 30462238]
  78. Curr Top Dev Biol. 2010;92:73-129 [PMID: 20816393]
  79. J Pediatr Endocrinol Metab. 2012;25(3-4):313-6 [PMID: 22768662]
  80. Nat Genet. 2009 Jun;41(6):729-33 [PMID: 19448623]
  81. Horm Res Paediatr. 2017;88(3-4):194-200 [PMID: 28672280]
  82. J Korean Med Sci. 2011 Jul;26(7):927-31 [PMID: 21738347]
  83. Pediatr Res. 2016 Oct;80(4):521-5 [PMID: 27304100]
  84. Neuron. 2008 Dec 10;60(5):818-31 [PMID: 19081377]
  85. J Clin Endocrinol Metab. 2001 Jun;86(6):2364-8 [PMID: 11397824]
  86. J Clin Endocrinol Metab. 2020 Apr 1;105(4): [PMID: 32160304]
  87. Lancet Diabetes Endocrinol. 2016 Mar;4(3):265-274 [PMID: 26852255]
  88. Dev Cell. 2008 Oct;15(4):547-57 [PMID: 18854139]
  89. Pediatr Res. 2021 Aug;90(2):431-435 [PMID: 33214675]
  90. Semin Reprod Med. 2019 Jul;37(4):174-181 [PMID: 31972862]
  91. Dtsch Arztebl Int. 2013 Jun;110(25):423-4 [PMID: 23840286]
  92. Genome Biol. 2003;4(10):231 [PMID: 14519192]
  93. J Korean Med Sci. 2014 Aug;29(8):1120-5 [PMID: 25120323]
  94. Am J Surg. 2002 Apr;183(4):430-4 [PMID: 11975932]
  95. Horm Res Paediatr. 2017;87(6):405-411 [PMID: 27798941]
  96. Fertil Steril. 2007 Mar;87(3):627-34 [PMID: 17140570]
  97. Int J Obes (Lond). 2013 Aug;37(8):1036-43 [PMID: 23164700]
  98. Am J Hum Genet. 1990 Jul;47(1):137-48 [PMID: 2349942]
  99. Front Endocrinol (Lausanne). 2012 Dec 13;3:149 [PMID: 23248615]
  100. Endocrinology. 1999 Nov;140(11):5257-66 [PMID: 10537156]
  101. Nat Neurosci. 2013 Mar;16(3):281-9 [PMID: 23354331]
  102. Endocr Rev. 2001 Feb;22(1):111-51 [PMID: 11159818]
  103. J Neuroendocrinol. 2018 Jul;30(7):e12589 [PMID: 29520866]
  104. Endocrinol Metab (Seoul). 2015 Jun;30(2):124-41 [PMID: 26194072]
  105. Dev Biol. 2015 Oct 15;406(2):235-46 [PMID: 26318021]
  106. Hum Reprod Update. 2004 Jan-Feb;10(1):67-77 [PMID: 15005465]
  107. Neuroreport. 2001 Dec 21;12(18):3959-63 [PMID: 11742219]
  108. Ann Pediatr Endocrinol Metab. 2016 Jun;21(2):66-9 [PMID: 27462581]
  109. Trends Cell Biol. 2006 Nov;16(11):578-87 [PMID: 16996269]
  110. J Clin Endocrinol Metab. 2020 Oct 1;105(10): [PMID: 32676665]
  111. Endocrinology. 2010 Oct;151(10):5038-47 [PMID: 20685868]
  112. Nucleic Acids Res. 2021 Apr 19;49(7):3796-3813 [PMID: 33744966]
  113. J Clin Endocrinol Metab. 2006 Jun;91(6):2432-6 [PMID: 16569738]
  114. BMC Genet. 2018 Jul 27;19(1):47 [PMID: 30053798]
  115. Ital J Pediatr. 2020 Mar 30;46(1):39 [PMID: 32228714]
  116. PLoS One. 2018 Apr 3;13(4):e0195209 [PMID: 29614125]
  117. Oncotarget. 2017 Jul 18;8(49):85102-85109 [PMID: 29156706]
  118. J Clin Endocrinol Metab. 2010 May;95(5):2276-80 [PMID: 20237166]
  119. J Korean Med Sci. 2017 Jan;32(1):108-114 [PMID: 27914139]

Word Cloud

Created with Highcharts 10.0.0genefactorsCPPICPPgeneticprecociouspubertyreceptor3HPGaxisnongeneticPPassociatedkisspeptinKISS1mutationKISS1Rloss-of-functionMKRN3homologDLK1tachykininprogressionmaycorrelatedPubertalonsetknownresultreactivationhypothalamic-pituitary-gonadalcontrolledcomplexinteractionscasesdiagnosedcentraldefinedprematureactivationcausegirlsidentifiablethusreferredidiopathicwhereasboyslikelyorganiclesionbrainbackgroundsupportedstudiesshowingmaternalagemenarchepubertaltimingoffspringgainexpressiongain-of-functionmakorinringfingerproteinmutationsdelta-like1genesgamma-aminobutyricacidsubunitalpha-1GABRA1lin-28BLIN28BneuropeptideYNPYRTAC3TACR3implicatedalthoughrelationshipsrequireelucidationEnvironmentalsocioeconomicalsoepigeneticDNAmethylationhistoneposttranslationalmodificationsnoncodingribonucleicacidsmediaterelationshipenvironmentalshort-long-termadversehealthoutcomesformsrationaleresearchfocusingunderstandingGeneticCentral

Similar Articles

Cited By