Network analysis of intra- and interspecific freshwater fish interactions using year-around tracking.

Sara Vanovac, Dakota Howard, Christopher T Monk, Robert Arlinghaus, Philippe J Giabbanelli
Author Information
  1. Sara Vanovac: Computer Science Department, Furman University, Greenville, SC 29613, USA.
  2. Dakota Howard: Computer Science Department, Furman University, Greenville, SC 29613, USA.
  3. Christopher T Monk: Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany. ORCID
  4. Robert Arlinghaus: Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany. ORCID
  5. Philippe J Giabbanelli: Department of Computer Science and Software Engineering, Miami University, Benton Hall 205 W, 510 E High Street, Oxford, OH 45056, USA. ORCID

Abstract

A long-term, yet detailed view into the social patterns of aquatic animals has been elusive. With advances in reality mining tracking technologies, a proximity-based social network (PBSN) can capture detailed spatio-temporal underwater interactions. We collected and analysed a large dataset of 108 freshwater fish from four species, tracked every few seconds over 1 year in their natural environment. We calculated the clustering coefficient of minute-by-minute PBSNs to measure social interactions, which can happen among fish sharing resources or habitat preferences (positive/neutral interactions) or in predator and prey during foraging interactions (agonistic interactions). A statistically significant coefficient compared to an equivalent random network suggests interactions, while a significant aggregated clustering across PBSNs indicates prolonged, purposeful social behaviour. Carp () displayed within- and among-species interactions, especially during the day and in the winter, while tench () and catfish () were solitary. Perch () did not exhibit significant social behaviour (except in autumn) despite being usually described as a predator using social facilitation to increase prey intake. Our work illustrates how methods for building a PBSN can affect the network's structure and highlights challenges (e.g. missing signals, different burst frequencies) in deriving a PBSN from reality mining technologies.

Keywords

References

  1. Trends Cogn Sci. 2015 Jan;19(1):46-54 [PMID: 25487706]
  2. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  3. Mov Ecol. 2021 Jul 28;9(1):40 [PMID: 34321114]
  4. J Anim Ecol. 2018 Jan;87(1):128-138 [PMID: 28994101]
  5. Trends Ecol Evol. 2007 Jun;22(6):316-22 [PMID: 17339067]
  6. PLoS One. 2015 May 22;10(5):e0126534 [PMID: 26000459]
  7. Sci Rep. 2016 Dec 22;6:39713 [PMID: 28004820]
  8. Nature. 2007 Apr 5;446(7136):664-7 [PMID: 17410175]
  9. J Fish Biol. 2010 May;76(7):1576-91 [PMID: 20557617]
  10. J Fish Biol. 2015 Mar;86(3):1016-29 [PMID: 25644471]
  11. Ecology. 2006 Oct;87(10):2411-7 [PMID: 17089649]
  12. Proc R Ir Acad B. 1974;74(18):245-303 [PMID: 4445141]
  13. Chronobiol Int. 2003 Nov;20(6):1001-17 [PMID: 14680140]
  14. Physiol Behav. 2005 Mar 31;84(4):595-605 [PMID: 15811395]
  15. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  16. Trends Ecol Evol. 2013 Jul;28(7):423-31 [PMID: 23623003]
  17. J R Soc Interface. 2013 Oct 23;11(90):20130794 [PMID: 24152812]
  18. Sci Rep. 2017 Nov 21;7(1):15970 [PMID: 29162872]
  19. Science. 2015 Jun 19;348(6241):1358-61 [PMID: 26089514]
  20. Anim Behav. 1998 Sep;56(3):719-725 [PMID: 9784222]
  21. Nature. 2009 Apr 23;458(7241):1018-20 [PMID: 19396144]
  22. Proc Biol Sci. 2005 Oct 7;272(1576):2065-72 [PMID: 16191618]
  23. Science. 2018 May 25;360(6391):911-914 [PMID: 29798883]
  24. J Fish Biol. 2019 Jan;94(1):3 [PMID: 30697759]
  25. J R Soc Interface. 2021 Mar;18(176):20200925 [PMID: 33784885]
  26. PLoS One. 2018 Mar 15;13(3):e0194092 [PMID: 29543856]
  27. Phys Rev E. 2018 Jun;97(6-1):062312 [PMID: 30011557]
  28. Trends Ecol Evol. 2013 Sep;28(9):541-51 [PMID: 23856617]
  29. PLoS One. 2014 Jun 04;9(6):e98997 [PMID: 24896256]
  30. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2312-5 [PMID: 21262802]
  31. Oecologia. 2005 Mar;143(2):211-9 [PMID: 15682346]
  32. PLoS One. 2017 Mar 16;12(3):e0173989 [PMID: 28301558]
  33. Proc Biol Sci. 2016 May 11;283(1830): [PMID: 27170711]
  34. Ecology. 2010 Jan;91(1):222-32 [PMID: 20380211]
  35. Trends Ecol Evol. 2008 Jul;23(7):394-401 [PMID: 18501467]

MeSH Term

Animals
Carps
Ecosystem
Fresh Water
Perches
Predatory Behavior

Word Cloud

Created with Highcharts 10.0.0interactionssocialnetworkPBSNcanfishclusteringsignificantbehaviourdetailedrealityminingtrackingtechnologiesfreshwatercoefficientPBSNspredatorpreyusinganalysislong-termyetviewpatternsaquaticanimalselusiveadvancesproximity-basedcapturespatio-temporalunderwatercollectedanalysedlargedataset108fourspeciestrackedeveryseconds1yearnaturalenvironmentcalculatedminute-by-minutemeasurehappenamongsharingresourceshabitatpreferencespositive/neutralforagingagonisticstatisticallycomparedequivalentrandomsuggestsaggregatedacrossindicatesprolongedpurposefulCarpdisplayedwithin-among-speciesespeciallydaywintertenchcatfishsolitaryPerchexhibitexceptautumndespiteusuallydescribedfacilitationincreaseintakeworkillustratesmethodsbuildingaffectnetwork'sstructurehighlightschallengesegmissingsignalsdifferentburstfrequenciesderivingNetworkintra-interspecificyear-aroundanimaldynamicpredator–prey

Similar Articles

Cited By