Identification of molecular glues of the SLP76/14-3-3 protein-protein interaction.

Lorenzo Soini, Martin Redhead, Marta Westwood, Seppe Leysen, Jeremy Davis, Christian Ottmann
Author Information
  1. Lorenzo Soini: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands C.Ottmann@tue.nl.
  2. Martin Redhead: Exscientia Ltd, Schrodinger Building, Oxford Science Park Oxford OX44GE UK.
  3. Marta Westwood: Structural Biology, Discovery, Charles River, Chesterford Research Park UK.
  4. Seppe Leysen: Department of Structural Biology and Biophysics, UCB Celltech Slough UK.
  5. Jeremy Davis: Department of Chemistry, UCB Celltech Slough UK.
  6. Christian Ottmann: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands C.Ottmann@tue.nl. ORCID

Abstract

The stabilisation of protein-protein interactions (PPIs) through molecular glues is a novel and promising approach in drug discovery. In stark contrast to research in protein-protein inhibition the field of stabilisation remains underdeveloped with comparatively few examples of small-molecule stabilisers of PPIs reported to date. At the same time identifying molecular glues has received recent sustained interest, especially in the fields of targeted protein degradation and 14-3-3 PPIs. The hub-protein 14-3-3 has a broad interactome with more than 500 known protein partners which presents a great opportunity for therapeutic intervention. In this study we have developed an HTRF assay suitable for HTS of the 14-3-3/SLP76 PPI and have completed a proof of concept screen against a chemically diverse library of 20 K molecules. The adaptor protein SLP76 has been reported to interact with 14-3-3 proteins downstream of the TCR playing an important role in mediating its own proteasomal degradation. We believe that stabilisation of this PPI could be exploited to potentiate degradation of SLP76 and therefore inhibit TCR signalling. This would represent an interesting alternative to other approaches in the field of targeted protein degradation. Here we disclose 16 novel stabilisers of the 14-3-3/SLP76 PPI across multiple different chemotypes. Based on the early results presented here we would recommend this approach to find molecular glues with broad applicability in the field of 14-3-3 PPIs.

References

  1. J Med Chem. 2016 Jun 9;59(11):5129-30 [PMID: 27199030]
  2. Cell. 1992 Aug 7;70(3):365-8 [PMID: 1379518]
  3. Medchemcomm. 2019 Jun 25;10(9):1550-1568 [PMID: 31673315]
  4. Subcell Biochem. 2010;54:195-214 [PMID: 21222284]
  5. Medchemcomm. 2019 Jul 22;10(10):1796-1802 [PMID: 31814953]
  6. Physiol Rev. 2002 Apr;82(2):373-428 [PMID: 11917093]
  7. Nat Methods. 2013 Jul;10(7):676-82 [PMID: 23749301]
  8. J Biol Chem. 2012 Oct 5;287(41):34091-100 [PMID: 22902619]
  9. Chem Biol. 2014 Sep 18;21(9):1102-14 [PMID: 25237857]
  10. Hum Mol Genet. 2016 Oct 15;25(20):4405-4418 [PMID: 28173130]
  11. Blood. 2015 Nov 19;126(21):2366-9 [PMID: 26438514]
  12. Chemistry. 2020 Jun 2;26(31):7131-7139 [PMID: 32255539]
  13. J Am Chem Soc. 2021 Jun 9;143(22):8454-8464 [PMID: 34047554]
  14. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E34-43 [PMID: 24351927]
  15. Biochemistry. 1999 Sep 21;38(38):12499-504 [PMID: 10493820]
  16. Eur J Med Chem. 2020 Oct 1;203:112539 [PMID: 32698111]
  17. J Exp Med. 2007 Mar 19;204(3):681-91 [PMID: 17353368]
  18. Nat Rev Immunol. 2006 Jan;6(1):67-78 [PMID: 16493428]
  19. Signal Transduct Target Ther. 2020 Sep 23;5(1):213 [PMID: 32968059]
  20. Nat Chem Biol. 2020 Nov;16(11):1154-1155 [PMID: 33067596]
  21. Bioorg Med Chem Lett. 2008 Nov 15;18(22):5904-8 [PMID: 18752944]
  22. ACS Chem Biol. 2013 Jan 18;8(1):27-35 [PMID: 23210482]
  23. Drug Discov Today Technol. 2019 Apr;31:53-60 [PMID: 31200860]
  24. Front Mol Neurosci. 2017 Oct 12;10:318 [PMID: 29075177]
  25. Exp Mol Med. 2018 Jul 27;50(7):1-8 [PMID: 30054456]
  26. Drug Discov Today Technol. 2017 Jun;24:1-2 [PMID: 29233293]
  27. J Mol Biol. 2009 Mar 6;386(4):913-9 [PMID: 19244612]
  28. FEBS Lett. 1994 Sep 26;352(2):163-6 [PMID: 7925968]
  29. Mol Cell. 2007 Feb 9;25(3):427-40 [PMID: 17289589]
  30. ACS Chem Biol. 2013 Sep 20;8(9):1869-75 [PMID: 23808890]
  31. Exp Cell Res. 2007 Oct 1;313(16):3624-34 [PMID: 17720156]
  32. Semin Cell Dev Biol. 2011 Sep;22(7):705-12 [PMID: 21983031]
  33. Leukemia. 2012 Nov;26(11):2326-35 [PMID: 22552008]
  34. Br J Pharmacol Chemother. 1960 Mar;15:111-6 [PMID: 13832739]
  35. Semin Cell Dev Biol. 2011 Sep;22(7):663-72 [PMID: 21920446]
  36. Pharmacol Ther. 2017 Jun;174:138-144 [PMID: 28223226]
  37. Semin Cancer Biol. 2006 Jun;16(3):183-92 [PMID: 16697662]
  38. Biochem J. 2010 Sep 15;430(3):405-13 [PMID: 20659021]
  39. J Biol Chem. 2012 Mar 30;287(14):11037-48 [PMID: 22334673]
  40. Mol Cell Proteomics. 2011 Oct;10(10):M110.005751 [PMID: 21725060]
  41. Cell. 2021 Jan 7;184(1):3-9 [PMID: 33417864]
  42. Nat Immunol. 2007 Jan;8(1):84-91 [PMID: 17115060]
  43. J Neurochem. 2009 Jan;108(1):33-43 [PMID: 19014373]
  44. Angew Chem Int Ed Engl. 2007;46(6):915-8 [PMID: 17171749]
  45. Semin Cancer Biol. 2006 Jun;16(3):162-72 [PMID: 16678438]
  46. Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21520-21524 [PMID: 32816380]
  47. J Am Chem Soc. 2012 Mar 14;134(10):4465-8 [PMID: 22369643]
  48. Cancer Res. 2008 Mar 15;68(6):1760-7 [PMID: 18339856]
  49. J Am Chem Soc. 2019 Feb 27;141(8):3524-3531 [PMID: 30707565]
  50. Mol Biol Cell. 2012 Mar;23(6):996-1009 [PMID: 22278744]
  51. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1152-61 [PMID: 26888287]
  52. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3084-8 [PMID: 17360612]
  53. Essays Biochem. 2017 Nov 8;61(5):505-516 [PMID: 29118097]
  54. Cell. 1997 Dec 26;91(7):961-71 [PMID: 9428519]
  55. Angew Chem Int Ed Engl. 2010 Jun 1;49(24):4129-32 [PMID: 20437433]
  56. Sci Rep. 2016 Aug 24;6:31988 [PMID: 27552928]
  57. Cell. 1991 Aug 23;66(4):807-15 [PMID: 1715244]
  58. Science. 2010 Mar 12;327(5971):1345-50 [PMID: 20223979]
  59. Bioorg Med Chem Lett. 2018 Aug 15;28(15):2585-2592 [PMID: 29980357]
  60. Annu Rev Immunol. 2002;20:371-94 [PMID: 11861607]
  61. J Biol Chem. 1998 Jun 26;273(26):16305-10 [PMID: 9632691]
  62. FEBS Lett. 2021 Feb;595(3):404-414 [PMID: 33159816]
  63. Prog Biophys Mol Biol. 2015 Oct;119(1):10-9 [PMID: 26093250]
  64. J Med Chem. 2020 Jul 9;63(13):6694-6707 [PMID: 32501690]

Word Cloud

Created with Highcharts 10.0.0PPIsmoleculargluesproteindegradation14-3-3stabilisationprotein-proteinfieldPPInovelapproachstabilisersreportedtargetedbroad14-3-3/SLP76SLP76TCRinteractionspromisingdrugdiscoverystarkcontrastresearchinhibitionremainsunderdevelopedcomparativelyexamplessmall-moleculedatetimeidentifyingreceivedrecentsustainedinterestespeciallyfieldshub-proteininteractome500knownpartnerspresentsgreatopportunitytherapeuticinterventionstudydevelopedHTRFassaysuitableHTScompletedproofconceptscreenchemicallydiverselibrary20Kmoleculesadaptorinteractproteinsdownstreamplayingimportantrolemediatingproteasomalbelieveexploitedpotentiatethereforeinhibitsignallingrepresentinterestingalternativeapproachesdisclose16acrossmultipledifferentchemotypesBasedearlyresultspresentedrecommendfindapplicabilityIdentificationSLP76/14-3-3interaction

Similar Articles

Cited By (4)