Construction of Inverse Metal-Zeolite Interfaces via Area-Selective Atomic Layer Deposition.
Peng Zhai, Laibao Zhang, David A Cullen, Divakar R Aireddy, Kunlun Ding
Author Information
Peng Zhai: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Laibao Zhang: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
David A Cullen: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States. ORCID
Divakar R Aireddy: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Kunlun Ding: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States. ORCID
中文译文
English
The spatial confinement at metal-zeolite interfaces offers a powerful knob to steer the selectivity of chemical reactions on metal catalysts. However, encapsulating metal catalysts into small-pore zeolites remains a challenging task. Here, we demonstrate an inverse design of metal-zeolite interfaces, "" constructed by area-selective atomic layer deposition. This inverse design bypasses the intrinsic synthetic issues associated with metal encapsulation, offering a potential solution for the fabrication of task-specific metal-zeolite interfaces for desired catalytic applications. Infrared spectroscopy and several probe reactions confirmed the spatial confinement effects at the inverse metal-zeolite interfaces.
Nature. 2016 Nov 3;539(7627):76-80
[PMID: 27706142 ]
ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41607-41617
[PMID: 29111636 ]
Science. 2012 Mar 9;335(6073):1205-8
[PMID: 22403386 ]
Angew Chem Int Ed Engl. 2021 Jan 11;60(2):976-982
[PMID: 32978880 ]
ChemSusChem. 2017 Oct 23;10(20):3947-3963
[PMID: 28621064 ]
Nat Mater. 2017 Jan;16(1):132-138
[PMID: 27669051 ]
ACS Appl Mater Interfaces. 2020 May 6;12(18):20331-20343
[PMID: 32292027 ]
Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6594-6598
[PMID: 28471048 ]
Science. 2020 Jan 10;367(6474):193-197
[PMID: 31919221 ]
Nat Mater. 2019 Aug;18(8):866-873
[PMID: 31263227 ]
J Am Chem Soc. 2012 Oct 24;134(42):17688-95
[PMID: 23016946 ]
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751
[PMID: 28503914 ]
Acc Chem Res. 2020 Feb 18;53(2):520-531
[PMID: 32027486 ]
Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9178-82
[PMID: 27346582 ]
Chem Soc Rev. 2017 Jul 31;46(15):4774-4808
[PMID: 28621344 ]
Chem Rev. 2020 Nov 11;120(21):11956-11985
[PMID: 33104349 ]
Angew Chem Int Ed Engl. 2019 Sep 2;58(36):12340-12354
[PMID: 30821890 ]
Nature. 2020 Sep;585(7824):221-224
[PMID: 32908262 ]
Chem Soc Rev. 2019 Feb 18;48(4):1095-1149
[PMID: 30624450 ]
Mater Horiz. 2021 Mar 1;8(3):661-684
[PMID: 34821311 ]
Chem Mater. 2019 Jan 8;31(1):2-12
[PMID: 30774194 ]
Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7
[PMID: 20391442 ]
Chem Mater. 2018 May 22;30(10):3177-3198
[PMID: 29861546 ]
Nat Chem. 2012 Dec;4(12):1030-6
[PMID: 23174984 ]
J Am Chem Soc. 2016 Dec 7;138(48):15743-15750
[PMID: 27934002 ]
J Am Chem Soc. 2014 Oct 29;136(43):15280-90
[PMID: 25314634 ]