Construction of Inverse Metal-Zeolite Interfaces via Area-Selective Atomic Layer Deposition.

Peng Zhai, Laibao Zhang, David A Cullen, Divakar R Aireddy, Kunlun Ding
Author Information
  1. Peng Zhai: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
  2. Laibao Zhang: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
  3. David A Cullen: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States. ORCID
  4. Divakar R Aireddy: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
  5. Kunlun Ding: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States. ORCID

Abstract

The spatial confinement at metal-zeolite interfaces offers a powerful knob to steer the selectivity of chemical reactions on metal catalysts. However, encapsulating metal catalysts into small-pore zeolites remains a challenging task. Here, we demonstrate an inverse design of metal-zeolite interfaces, "" constructed by area-selective atomic layer deposition. This inverse design bypasses the intrinsic synthetic issues associated with metal encapsulation, offering a potential solution for the fabrication of task-specific metal-zeolite interfaces for desired catalytic applications. Infrared spectroscopy and several probe reactions confirmed the spatial confinement effects at the inverse metal-zeolite interfaces.

Keywords

References

  1. Nature. 2016 Nov 3;539(7627):76-80 [PMID: 27706142]
  2. ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41607-41617 [PMID: 29111636]
  3. Science. 2012 Mar 9;335(6073):1205-8 [PMID: 22403386]
  4. Angew Chem Int Ed Engl. 2021 Jan 11;60(2):976-982 [PMID: 32978880]
  5. ChemSusChem. 2017 Oct 23;10(20):3947-3963 [PMID: 28621064]
  6. Nat Mater. 2017 Jan;16(1):132-138 [PMID: 27669051]
  7. ACS Appl Mater Interfaces. 2020 May 6;12(18):20331-20343 [PMID: 32292027]
  8. Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6594-6598 [PMID: 28471048]
  9. Science. 2020 Jan 10;367(6474):193-197 [PMID: 31919221]
  10. Nat Mater. 2019 Aug;18(8):866-873 [PMID: 31263227]
  11. J Am Chem Soc. 2012 Oct 24;134(42):17688-95 [PMID: 23016946]
  12. Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751 [PMID: 28503914]
  13. Acc Chem Res. 2020 Feb 18;53(2):520-531 [PMID: 32027486]
  14. Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9178-82 [PMID: 27346582]
  15. Chem Soc Rev. 2017 Jul 31;46(15):4774-4808 [PMID: 28621344]
  16. Chem Rev. 2020 Nov 11;120(21):11956-11985 [PMID: 33104349]
  17. Angew Chem Int Ed Engl. 2019 Sep 2;58(36):12340-12354 [PMID: 30821890]
  18. Nature. 2020 Sep;585(7824):221-224 [PMID: 32908262]
  19. Chem Soc Rev. 2019 Feb 18;48(4):1095-1149 [PMID: 30624450]
  20. Mater Horiz. 2021 Mar 1;8(3):661-684 [PMID: 34821311]
  21. Chem Mater. 2019 Jan 8;31(1):2-12 [PMID: 30774194]
  22. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  23. Chem Mater. 2018 May 22;30(10):3177-3198 [PMID: 29861546]
  24. Nat Chem. 2012 Dec;4(12):1030-6 [PMID: 23174984]
  25. J Am Chem Soc. 2016 Dec 7;138(48):15743-15750 [PMID: 27934002]
  26. J Am Chem Soc. 2014 Oct 29;136(43):15280-90 [PMID: 25314634]

Word Cloud

Created with Highcharts 10.0.0metal-zeoliteinterfacesmetalinverseconfinementspatialreactionscatalystsdesignatomiclayerdepositionofferspowerfulknobsteerselectivitychemicalHoweverencapsulatingsmall-porezeolitesremainschallengingtaskdemonstrate""constructedarea-selectivebypassesintrinsicsyntheticissuesassociatedencapsulationofferingpotentialsolutionfabricationtask-specificdesiredcatalyticapplicationsInfraredspectroscopyseveralprobeconfirmedeffectsConstructionInverseMetal-ZeoliteInterfacesviaArea-SelectiveAtomicLayerDepositioncatalystnanoparticleszeolite

Similar Articles

Cited By