A balancing act in transcription regulation by response regulators: titration of transcription factor activity by decoy DNA binding sites.

Rong Gao, Libby J Helfant, Ti Wu, Zeyue Li, Samantha E Brokaw, Ann M Stock
Author Information
  1. Rong Gao: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  2. Libby J Helfant: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  3. Ti Wu: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  4. Zeyue Li: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  5. Samantha E Brokaw: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  6. Ann M Stock: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA. ORCID

Abstract

Studies of transcription regulation are often focused on binding of transcription factors (TFs) to a small number of promoters of interest. It is often assumed that TFs are in great excess to their binding sites (TFBSs) and competition for TFs between DNA sites is seldom considered. With increasing evidence that TFBSs are exceedingly abundant for many TFs and significant variations in TF and TFBS numbers occur during growth, the interplay between a TF and all TFBSs should not be ignored. Here, we use additional decoy DNA sites to quantitatively analyze how the relative abundance of a TF to its TFBSs impacts the steady-state level and onset time of gene expression for the auto-activated Escherichia coli PhoB response regulator. We show that increasing numbers of decoy sites progressively delayed transcription activation and lowered promoter activities. Perturbation of transcription regulation by additional TFBSs did not require extreme numbers of decoys, suggesting that PhoB is approximately at capacity for its DNA sites. Addition of decoys also converted a graded response to a bi-modal response. We developed a binding competition model that captures the major features of experimental observations, providing a quantitative framework to assess how variations in TFs and TFBSs influence transcriptional responses.

References

  1. Cell. 2018 Mar 22;173(1):196-207.e14 [PMID: 29502970]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012702 [PMID: 24580252]
  3. Nature. 2008 May 8;453(7192):246-50 [PMID: 18418379]
  4. Cell Chem Biol. 2016 Feb 18;23(2):214-224 [PMID: 26971873]
  5. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  6. Nat Methods. 2014 May;11(5):508-20 [PMID: 24781324]
  7. Cell. 2014 Mar 13;156(6):1312-1323 [PMID: 24612990]
  8. Cell. 2014 Apr 24;157(3):624-35 [PMID: 24766808]
  9. Mol Syst Biol. 2012 Mar 27;8:576 [PMID: 22453733]
  10. Nat Biotechnol. 2016 Jan;34(1):104-10 [PMID: 26641532]
  11. PLoS Genet. 2013 Oct;9(10):e1003927 [PMID: 24204322]
  12. Genome Res. 2017 Jan;27(1):87-94 [PMID: 27965290]
  13. Mol Syst Biol. 2012;8:620 [PMID: 23089683]
  14. mBio. 2015 May 26;6(3):e00686-15 [PMID: 26015501]
  15. Annu Rev Microbiol. 2011;65:189-213 [PMID: 21639793]
  16. BMC Biol. 2018 Aug 16;16(1):91 [PMID: 30115066]
  17. J Bacteriol. 2017 Aug 22;199(18): [PMID: 28674072]
  18. Genes Dev. 2006 Oct 1;20(19):2754-67 [PMID: 17015436]
  19. BMC Evol Biol. 2019 Mar 1;19(1):67 [PMID: 30823869]
  20. Annu Rev Microbiol. 2019 Sep 8;73:507-528 [PMID: 31226026]
  21. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4138-43 [PMID: 12640143]
  22. Nat Rev Genet. 2007 Jun;8(6):450-61 [PMID: 17510665]
  23. mBio. 2017 May 16;8(3): [PMID: 28512092]
  24. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  25. Annu Rev Microbiol. 2008;62:193-210 [PMID: 18537474]
  26. Nat Genet. 2004 May;36(5):486-91 [PMID: 15107854]
  27. Trends Microbiol. 2015 Aug;23(8):463-7 [PMID: 26003748]
  28. Mol Syst Biol. 2009;5:272 [PMID: 19455136]
  29. Mol Gen Genet. 1998 Feb;257(4):469-77 [PMID: 9529528]
  30. J Mol Biol. 2006 Jun 16;359(4):1107-24 [PMID: 16701695]
  31. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7 [PMID: 23267085]
  32. PLoS One. 2012;7(10):e47314 [PMID: 23071782]
  33. Phys Biol. 2010 Aug 23;7(3):036005 [PMID: 20733247]
  34. Cell Rep. 2018 Sep 11;24(11):3061-3071.e6 [PMID: 30208328]
  35. PLoS Pathog. 2014 Jun 12;10(6):e1004174 [PMID: 24945495]
  36. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  37. mSystems. 2020 May 19;5(3): [PMID: 32430408]
  38. J Bacteriol. 2007 Mar;189(5):1974-82 [PMID: 17158656]
  39. Antimicrob Agents Chemother. 2015 Apr;59(4):2223-35 [PMID: 25645827]
  40. Nucleic Acids Res. 2021 Jan 25;49(2):1163-1172 [PMID: 33367820]
  41. PLoS Comput Biol. 2017 Apr 17;13(4):e1005491 [PMID: 28414750]
  42. Biochemistry. 2013 Nov 19;52(46):8177-86 [PMID: 24199636]
  43. Mol Syst Biol. 2010 Dec 21;6:452 [PMID: 21179024]
  44. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  45. PLoS Biol. 2021 Jun 25;19(6):e3001306 [PMID: 34170902]
  46. Nucleic Acids Res. 2016 Mar 18;44(5):2058-74 [PMID: 26843427]
  47. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4016-21 [PMID: 20160109]
  48. Nucleic Acids Res. 2008 Jul;36(12):3950-5 [PMID: 18515344]
  49. J Bacteriol. 2001 Nov;183(21):6384-93 [PMID: 11591683]
  50. J Mol Biol. 2010 Aug 27;401(4):671-80 [PMID: 20600106]
  51. Annu Rev Microbiol. 2019 Sep 8;73:175-197 [PMID: 31100988]
  52. Mol Syst Biol. 2008;4:161 [PMID: 18277378]
  53. Nat Commun. 2015 Jan 12;6:5829 [PMID: 25581030]
  54. Elife. 2020 Aug 18;9: [PMID: 32808926]
  55. Nat Commun. 2020 Nov 24;11(1):5961 [PMID: 33235249]
  56. Phys Rev E. 2020 Nov;102(5-1):052410 [PMID: 33327198]
  57. Transcription. 2016 Aug 7;7(4):115-20 [PMID: 27384377]
  58. Biophys J. 2010 May 19;98(9):2024-31 [PMID: 20441767]
  59. Nat Chem Biol. 2019 Feb;15(2):111-114 [PMID: 30598544]
  60. Nucleic Acids Res. 1990 Aug 11;18(15):4631 [PMID: 2201955]
  61. Science. 2012 May 18;336(6083):911-5 [PMID: 22605776]
  62. Nature. 2005 Jul 28;436(7050):588-92 [PMID: 16049495]
  63. Cell. 2016 Aug 25;166(5):1282-1294.e18 [PMID: 27545349]
  64. J Bacteriol. 1974 Sep;119(3):736-47 [PMID: 4604283]
  65. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16659-64 [PMID: 18946033]

Grants

  1. R35 GM131727/NIGMS NIH HHS

MeSH Term

Binding Sites
DNA
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Nucleotide Motifs
Protein Binding
Transcription Factors

Chemicals

Escherichia coli Proteins
Transcription Factors
DNA

Word Cloud

Created with Highcharts 10.0.0transcriptionsitesTFBSsTFsbindingDNAresponseregulationTFnumbersdecoyoftencompetitionincreasingvariationsadditionalPhoBdecoysStudiesfocusedfactorssmallnumberpromotersinterestassumedgreatexcessseldomconsideredevidenceexceedinglyabundantmanysignificantTFBSoccurgrowthinterplayignoredusequantitativelyanalyzerelativeabundanceimpactssteady-statelevelonsettimegeneexpressionauto-activatedEscherichiacoliregulatorshowprogressivelydelayedactivationloweredpromoteractivitiesPerturbationrequireextremesuggestingapproximatelycapacityAdditionalsoconvertedgradedbi-modaldevelopedmodelcapturesmajorfeaturesexperimentalobservationsprovidingquantitativeframeworkassessinfluencetranscriptionalresponsesbalancingactregulators:titrationfactoractivity

Similar Articles

Cited By