G-alpha interacting protein interacting protein, C terminus 1 regulates epileptogenesis by increasing the expression of metabotropic glutamate receptor 7.

Yong Liu, You Wang, Juan Yang, Tao Xu, Changhong Tan, Peng Zhang, Qiankun Liu, Yangmei Chen
Author Information
  1. Yong Liu: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China. ORCID
  2. You Wang: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.
  3. Juan Yang: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China. ORCID
  4. Tao Xu: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.
  5. Changhong Tan: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.
  6. Peng Zhang: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.
  7. Qiankun Liu: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.
  8. Yangmei Chen: Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.

Abstract

AIMS: It has been reported that the G-alpha interacting protein (GAIP) interacting protein, C terminus 1 (GIPC1/GIPC) engages in vesicular trafficking, receptor transport and expression, and endocytosis. However, its role in epilepsy is unclear. Therefore, in this study, we aimed to explore the role of GIPC1 in epilepsy and its possible underlying mechanism.
METHODS: The expression patterns of GIPC1 in patients with temporal lobe epilepsy (TLE) and in mice with kainic acid (KA)-induced epilepsy were detected. Behavioral video monitoring and hippocampal local field potential (LFP) recordings were carried out to determine the role of GIPC1 in epileptogenesis after overexpression of GIPC1. Coimmunoprecipitation (Co-IP) assay and high-resolution immunofluorescence staining were conducted to investigate the relationship between GIPC1 and metabotropic glutamate receptor 7 (mGluR7). In addition, the expression of mGluR7 after overexpression of GIPC1 was measured, and behavioral video monitoring and LFP recordings after antagonism of mGluR7 were performed to explore the possible mechanism mediated by GIPC1.
RESULTS: GIPC1 was downregulated in the brain tissues of patients with TLE and mice with KA-induced epilepsy. After overexpression of GIPC1, prolonged latency period, decreased epileptic seizures and reduced seizure severity in behavioral analyses, and fewer and shorter abnormal brain discharges in LFP recordings of KA-induced epileptic mice were observed. The result of the Co-IP assay showed the interaction between GIPC1 and mGluR7, and the high-resolution immunofluorescence staining also showed the colocalization of these two proteins. Additionally, along with GIPC1 overexpression, the total and cell membrane expression levels of mGluR7 were also increased. And after antagonism of mGluR7, increased epileptic seizures and aggravated seizure severity in behavioral analyses and more and longer abnormal brain discharges in LFP recordings were observed.
CONCLUSION: GIPC1 regulates epileptogenesis by interacting with mGluR7 and increasing its expression.

Keywords

References

  1. J Biol Chem. 2003 Jul 11;278(28):26295-301 [PMID: 12724327]
  2. J Biol Chem. 2008 Nov 21;283(47):32527-33 [PMID: 18775991]
  3. CNS Neurosci Ther. 2022 Jan;28(1):126-138 [PMID: 34676980]
  4. Neurotherapeutics. 2018 Jul;15(3):697-712 [PMID: 29922905]
  5. Neuron. 2020 Oct 14;108(1):193-208.e9 [PMID: 32853550]
  6. Epilepsia. 2021 Jan;62(1):228-237 [PMID: 33236785]
  7. CNS Neurosci Ther. 2020 Aug;26(8):851-861 [PMID: 32436359]
  8. Neuroscience. 2002;112(1):101-11 [PMID: 12044475]
  9. Mol Cell Biol. 2006 Dec;26(23):8928-41 [PMID: 17000777]
  10. Tumour Biol. 2016 Oct;37(10):13777-13788 [PMID: 27481513]
  11. Science. 2015 Mar 20;347(6228):1362-7 [PMID: 25792327]
  12. Neural Regen Res. 2014 Nov 15;9(22):1995-2001 [PMID: 25598782]
  13. Epilepsia. 2010 Jun;51(6):1069-77 [PMID: 19889013]
  14. Epilepsia. 2018 May;59(5):945-958 [PMID: 29637555]
  15. Exp Mol Med. 2013 Jun 07;45:e26 [PMID: 23743496]
  16. CNS Neurosci Ther. 2020 Dec;26(12):1266-1277 [PMID: 33225612]
  17. Cell Death Dis. 2019 Oct 31;10(11):825 [PMID: 31672961]
  18. Annu Rev Pharmacol Toxicol. 2010;50:89-109 [PMID: 20055699]
  19. Int J Mol Med. 2002 May;9(5):509-13 [PMID: 11956658]
  20. Stem Cells. 2015 Sep;33(9):2674-85 [PMID: 26013465]
  21. Nat Commun. 2014 Jul 22;5:4501 [PMID: 25047565]
  22. Mol Psychiatry. 2020 Oct;25(10):2504-2516 [PMID: 30696942]
  23. Cell Mol Neurobiol. 2017 Jul;37(5):857-867 [PMID: 27592227]
  24. Mol Biol Cell. 2004 Nov;15(11):4926-37 [PMID: 15356268]
  25. JAMA Neurol. 2018 Mar 1;75(3):279-286 [PMID: 29279892]
  26. Mol Cell Biol. 2006 Dec;26(23):8942-52 [PMID: 17015470]
  27. J Cereb Blood Flow Metab. 2020 Sep;40(9):1769-1777 [PMID: 32663096]
  28. Lancet. 2015 Mar 7;385(9971):884-98 [PMID: 25260236]
  29. J Med Chem. 2019 Feb 14;62(3):1690-1695 [PMID: 30608678]
  30. Mol Biol Cell. 2005 Sep;16(9):4183-201 [PMID: 15975910]
  31. J Neurosci. 2008 Aug 20;28(34):8604-14 [PMID: 18716219]
  32. Neuron. 2008 Jun 12;58(5):736-48 [PMID: 18549785]
  33. Drugs. 2018 Mar;78(3):307-326 [PMID: 29368126]
  34. Neoplasia. 2021 Feb;23(2):181-188 [PMID: 33360508]
  35. Sci Adv. 2018 Oct 17;4(10):eaau2357 [PMID: 30345361]
  36. Eur J Pharmacol. 2017 Nov 15;815:49-55 [PMID: 28987273]
  37. JCI Insight. 2021 Feb 22;6(4): [PMID: 33476302]
  38. J Neurosci. 2007 Oct 24;27(43):11663-75 [PMID: 17959809]
  39. J Neurochem. 2015 Apr;133(1):134-43 [PMID: 25650116]
  40. J Cereb Blood Flow Metab. 2021 May;41(5):1145-1161 [PMID: 32669018]
  41. Nat Neurosci. 2008 Aug;11(8):940-8 [PMID: 18641645]
  42. Mol Biol Cell. 2001 Mar;12(3):615-27 [PMID: 11251075]
  43. Cell Death Dis. 2018 Oct 17;9(11):1058 [PMID: 30333479]
  44. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 [PMID: 4110397]
  45. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3): [PMID: 33397806]
  46. Biochem Biophys Res Commun. 2017 Mar 4;484(2):450-455 [PMID: 28137587]
  47. J Cereb Blood Flow Metab. 2020 Jan;40(1):204-213 [PMID: 30375913]
  48. Expert Opin Ther Targets. 2019 Apr;23(4):341-351 [PMID: 30801204]

MeSH Term

Adaptor Proteins, Signal Transducing
Animals
Brain
Disease Models, Animal
Epilepsy
Epilepsy, Temporal Lobe
Hippocampus
Humans
Kainic Acid
Male
Mice
Receptors, Metabotropic Glutamate

Chemicals

Adaptor Proteins, Signal Transducing
GIPC1 protein, human
Gipc1 protein, mouse
Receptors, Metabotropic Glutamate
metabotropic glutamate receptor 7
Kainic Acid

Word Cloud

Created with Highcharts 10.0.0GIPC1interactingproteinmGluR7expressionepilepsyreceptorLFPrecordingsoverexpressionG-alphaCterminus1rolemiceepileptogenesismetabotropicglutamate7behavioralbrainepileptictransportexplorepossiblemechanismpatientsTLEvideomonitoringCo-IPassayhigh-resolutionimmunofluorescencestainingantagonismKA-inducedseizuresseizureseverityanalysesabnormaldischargesobservedshowedalsoincreasedregulatesincreasingAIMS:reportedGAIPGIPC1/GIPCengagesvesiculartraffickingendocytosisHoweverunclearThereforestudyaimedunderlyingMETHODS:patternstemporallobekainicacidKA-induceddetectedBehavioralhippocampallocalfieldpotentialcarrieddetermineCoimmunoprecipitationconductedinvestigaterelationshipadditionmeasuredperformedmediatedRESULTS:downregulatedtissuesprolongedlatencyperioddecreasedreducedfewershorterresultinteractioncolocalizationtwoproteinsAdditionallyalongtotalcellmembranelevelsaggravatedlongerCONCLUSION:synaptictransmission

Similar Articles

Cited By