Modulation of Functional Connectivity in Response to Mirror Visual Feedback in Stroke Survivors: An MEG Study.

Ruei-Yi Tai, Jun-Ding Zhu, Chih-Chi Chen, Yu-Wei Hsieh, Chia-Hsiung Cheng
Author Information
  1. Ruei-Yi Tai: Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan.
  2. Jun-Ding Zhu: Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan. ORCID
  3. Chih-Chi Chen: Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
  4. Yu-Wei Hsieh: Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 333, Taiwan. ORCID
  5. Chia-Hsiung Cheng: Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan. ORCID

Abstract

BACKGROUND: Several brain regions are activated in response to mirror visual feedback (MVF). However, less is known about how these brain areas and their connectivity are modulated in stroke patients. This study aimed to explore the effects of MVF on brain functional connectivity in stroke patients.
MATERIALS AND METHODS: We enrolled 15 stroke patients who executed Bilateral-No mirror, Bilateral-Mirror, and Unilateral-Mirror conditions. The coherence values among five brain regions of interest in four different frequency bands were calculated from magnetoencephalographic signals. We examined the differences in functional connectivity of each two brain areas between the Bilateral-No mirror and Bilateral-Mirror conditions and between the Bilateral-Mirror and Unilateral-Mirror conditions.
RESULTS: The functional connectivity analyses revealed significantly stronger connectivity between the posterior cingulate cortex and primary motor cortex in the beta band (adjusted = 0.04) and possibly stronger connectivity between the precuneus and primary visual cortex in the theta band (adjusted = 0.08) in the Bilateral-Mirror condition than those in the Bilateral-No mirror condition. However, the comparisons between the Bilateral-Mirror and Unilateral-Mirror conditions revealed no significant differences in cortical coherence in all frequency bands.
CONCLUSIONS: Providing MVF to stroke patients may modulate the lesioned primary motor cortex through visuospatial and attentional cortical networks.

Keywords

References

  1. J Neurosci. 2012 Jan 4;32(1):215-22 [PMID: 22219283]
  2. Phys Med Biol. 2006 Apr 7;51(7):1759-68 [PMID: 16552102]
  3. J Neurosci. 2011 Mar 2;31(9):3217-24 [PMID: 21368033]
  4. Clin Rehabil. 2004 Dec;18(8):888-98 [PMID: 15609844]
  5. Cereb Cortex. 2007 Jul;17(7):1664-71 [PMID: 16963517]
  6. Neurorehabil Neural Repair. 2009 Mar-Apr;23(3):209-17 [PMID: 19074686]
  7. Disabil Rehabil. 2000 Jan 10-20;22(1-2):23-37 [PMID: 10661755]
  8. Clin Neurophysiol. 2020 Oct;131(10):2333-2340 [PMID: 32828035]
  9. Neuroreport. 2001 Nov 16;12(16):3493-5 [PMID: 11733698]
  10. Clin Neurophysiol. 2002 Jan;113(1):16-24 [PMID: 11801420]
  11. Phys Med Biol. 1999 Feb;44(2):423-40 [PMID: 10070792]
  12. NeuroRehabilitation. 2013;33(4):593-603 [PMID: 24018372]
  13. BMC Neurosci. 2012 Nov 05;13:138 [PMID: 23126264]
  14. Neurology. 1981 Sep;31(9):1167-70 [PMID: 7196542]
  15. Neuroimage. 2012 Jan 16;59(2):1501-7 [PMID: 21889595]
  16. PLoS One. 2011;6(11):e28226 [PMID: 22140555]
  17. Front Psychiatry. 2020 Aug 03;11:707 [PMID: 32848905]
  18. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15061-5 [PMID: 9844015]
  19. Cereb Cortex. 2008 Nov;18(11):2604-13 [PMID: 18308706]
  20. Comput Intell Neurosci. 2011;2011:879716 [PMID: 21584256]
  21. Neuroimage. 2003 Jul;19(3):698-709 [PMID: 12880800]
  22. Lancet. 1999 Jun 12;353(9169):2035-6 [PMID: 10376620]
  23. Ther Clin Risk Manag. 2020 Feb 07;16:75-85 [PMID: 32103968]
  24. J Cogn Neurosci. 1999 Jan;11(1):80-95 [PMID: 9950716]
  25. PLoS Biol. 2018 Mar 14;16(3):e2005348 [PMID: 29538384]
  26. Eur J Phys Rehabil Med. 2016 Jun;52(3):271-8 [PMID: 26923644]
  27. Neurorehabil Neural Repair. 2015 May;29(4):349-61 [PMID: 25160567]
  28. Ann Rehabil Med. 2011 Dec;35(6):747-58 [PMID: 22506202]
  29. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  30. Neurosci Res. 2017 Oct;123:36-42 [PMID: 28457959]
  31. Neuroimage. 2009 Jun;46(2):500-4 [PMID: 19249371]
  32. Exp Brain Res. 2005 May;163(1):118-22 [PMID: 15754176]
  33. Neurorehabil Neural Repair. 2015 Jun;29(5):444-52 [PMID: 25326511]
  34. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5614-E5623 [PMID: 29848632]
  35. Front Hum Neurosci. 2017 Feb 06;11:54 [PMID: 28220070]
  36. Exp Neurol. 2013 Jul;245:15-26 [PMID: 23022918]
  37. Neural Plast. 2016;2016:6087896 [PMID: 26881121]
  38. Int J Psychophysiol. 2001 Dec;43(1):41-58 [PMID: 11742684]
  39. Arch Phys Med Rehabil. 2009 Apr;90(4):675-81 [PMID: 19345786]
  40. NeuroRehabilitation. 2013;32(3):617-24 [PMID: 23648616]
  41. Clin Neurophysiol. 1999 Nov;110(11):1842-57 [PMID: 10576479]
  42. J Neurol Neurosurg Psychiatry. 2011 Apr;82(4):393-8 [PMID: 20861065]
  43. Neurorehabil Neural Repair. 2014 May;28(4):344-54 [PMID: 24370569]
  44. Brain Res. 2018 Dec 1;1700:170-180 [PMID: 30194016]
  45. Clin Neurophysiol. 2007 Dec;118(12):2656-63 [PMID: 17967558]
  46. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  47. Scand J Rehabil Med. 1975;7(1):13-31 [PMID: 1135616]
  48. Eur J Neurosci. 2005 Jul;22(1):235-46 [PMID: 16029213]
  49. J Neurosci. 2012 Jan 25;32(4):1293-300 [PMID: 22279214]
  50. Brain Behav. 2016 Jan 26;6(3):e00433 [PMID: 26839735]
  51. Int J Neurosci. 2018 Oct;128(10):966-974 [PMID: 29490535]
  52. J Neurosci. 2006 Dec 20;26(51):13338-43 [PMID: 17182784]
  53. Brain. 1992 Apr;115 ( Pt 2):565-87 [PMID: 1606482]
  54. Neurorehabil Neural Repair. 2014 Sep;28(7):652-9 [PMID: 24553103]
  55. Hum Brain Mapp. 2009 Jun;30(6):1857-65 [PMID: 19235884]
  56. Brain. 2014 Jan;137(Pt 1):12-32 [PMID: 23869106]
  57. Neural Plast. 2019 Oct 30;2019:8481371 [PMID: 31781183]
  58. Disabil Rehabil. 2009;31(26):2135-49 [PMID: 19903124]
  59. Front Neurosci. 2020 Jan 14;13:1363 [PMID: 32009873]
  60. Ann Transl Med. 2014 Aug;2(8):80 [PMID: 25333055]

Grants

  1. MOST106-2314-B-182-015-MY3/Ministry of Science and Technology, Taiwan
  2. CMRPD1H0402/Chang Gung Memorial Hospital
  3. BMRPD25/Chang Gung Memorial Hospital

Word Cloud

Created with Highcharts 10.0.0connectivitymirrorbrainstrokeBilateral-MirrorMVFpatientsfunctionalconditionscortexvisualBilateral-NoUnilateral-MirrorcoherenceprimaryregionsfeedbackHoweverareasfrequencybandsdifferencesrevealedstrongermotorbandadjusted=0conditioncorticalMEGBACKGROUND:SeveralactivatedresponselessknownmodulatedstudyaimedexploreeffectsMATERIALSANDMETHODS:enrolled15executedvaluesamongfiveinterestfourdifferentcalculatedmagnetoencephalographicsignalsexaminedtwoRESULTS:analysessignificantlyposteriorcingulatebeta04possiblyprecuneustheta08comparisonssignificantCONCLUSIONS:ProvidingmaymodulatelesionedvisuospatialattentionalnetworksModulationFunctionalConnectivityResponseMirrorVisualFeedbackStrokeSurvivors:StudymagnetoencephalographytherapyMT

Similar Articles

Cited By