Enhancement of Antibiofilm Activity of Ciprofloxacin against by Administration of Antimicrobial Peptides.

Muhammad Yasir, Debarun Dutta, Mark D P Willcox
Author Information
  1. Muhammad Yasir: School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia.
  2. Debarun Dutta: School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia. ORCID
  3. Mark D P Willcox: School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia. ORCID

Abstract

can develop resistance by mutation, transfection or biofilm formation. Resistance was induced in by growth in sub-inhibitory concentrations of ciprofloxacin for 30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet and live/dead staining. Effects on the cell membranes of biofilm cells were evaluated by measuring release of dyes and ATP, and nucleic acids. None of the strains developed resistance to AMPs while only ATCC 25923 developed resistance (128 times) to ciprofloxacin after 30 passages. Only peptides reduced biofilms of ciprofloxacin-resistant cells. The antibiofilm effect of melimine with ciprofloxacin was more (27%) than with melimine alone at 1X MIC ( < 0.001). Similarly, at 1X MIC the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone ( < 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released ≥ 66 nM ATP, more than either peptide alone ( ≤ 0.005). At 2X MIC, only melimine in combination with ciprofloxacin released DNA/RNA which was three times more than that released by melimine alone ( = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics for the treatment of biofilms.

Keywords

References

  1. Sci Rep. 2016 Jul 11;6:29707 [PMID: 27405275]
  2. Org Biomol Chem. 2015 Jul 21;13(27):7477-86 [PMID: 26068402]
  3. Int J Mol Sci. 2020 Dec 04;21(23): [PMID: 33291550]
  4. Front Cell Infect Microbiol. 2019 Apr 30;9:128 [PMID: 31114762]
  5. J Antimicrob Chemother. 2016 Feb;71(2):438-48 [PMID: 26589581]
  6. Int J Environ Res Public Health. 2021 Jul 16;18(14): [PMID: 34300053]
  7. PLoS Pathog. 2014 May 22;10(5):e1004152 [PMID: 24852171]
  8. Trends Microbiol. 2001 Jan;9(1):34-9 [PMID: 11166241]
  9. J Biol Chem. 1999 Mar 26;274(13):8405-10 [PMID: 10085071]
  10. Pharmaceuticals (Basel). 2017 Jun 25;10(3): [PMID: 28672834]
  11. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  12. Peptides. 2013 Nov;49:53-8 [PMID: 23988790]
  13. Curr Pharm Des. 2015;21(16):2073-88 [PMID: 25760338]
  14. Antimicrob Agents Chemother. 2015 Jul;59(7):3906-12 [PMID: 25896694]
  15. Peptides. 2006 Jun;27(6):1210-6 [PMID: 16289474]
  16. J Microbiol Immunol Infect. 2017 Aug;50(4):405-410 [PMID: 28690026]
  17. Biochim Biophys Acta. 2016 May;1858(5):1044-60 [PMID: 26525663]
  18. Biochemistry. 2000 Jul 25;39(29):8347-52 [PMID: 10913240]
  19. PLoS One. 2019 Jul 29;14(7):e0215703 [PMID: 31356627]
  20. J Bacteriol. 1990 Dec;172(12):6942-9 [PMID: 2174864]
  21. Cell Mol Life Sci. 2013 Aug;70(15):2773-86 [PMID: 23503622]
  22. Antimicrob Agents Chemother. 2012 Dec;56(12):6366-71 [PMID: 23070152]
  23. Antimicrob Agents Chemother. 2016 Sep 23;60(10):6313-25 [PMID: 27527084]
  24. J Innate Immun. 2019;11(3):193-204 [PMID: 30134244]
  25. Antimicrob Agents Chemother. 2013 Nov;57(11):5572-9 [PMID: 23979748]
  26. Clin Microbiol Infect. 2015 May;21 Suppl 1:S1-25 [PMID: 25596784]
  27. J Appl Microbiol. 2008 Dec;105(6):1817-25 [PMID: 19016975]
  28. Antimicrob Agents Chemother. 2004 Dec;48(12):4733-44 [PMID: 15561851]
  29. Int J Antimicrob Agents. 2019 Feb;53(2):143-151 [PMID: 30315918]
  30. Materials (Basel). 2018 Dec 05;11(12): [PMID: 30563067]
  31. Antimicrob Agents Chemother. 2011 Mar;55(3):1075-81 [PMID: 21189346]
  32. Biofouling. 2020 Oct;36(9):1019-1030 [PMID: 33161763]
  33. Biochem J. 2015 Jun 1;468(2):259-70 [PMID: 25761937]
  34. Clin Infect Dis. 2008 Jun 1;46 Suppl 5:S368-77 [PMID: 18462092]
  35. J Antimicrob Chemother. 2012 Nov;67(11):2665-72 [PMID: 22899801]
  36. J Pept Sci. 2016 Jan;22(1):4-27 [PMID: 26785684]
  37. Biopolymers. 2002;66(4):236-48 [PMID: 12491537]
  38. Biomaterials. 2002 Aug;23(16):3359-68 [PMID: 12099278]
  39. Antibiotics (Basel). 2019 May 09;8(2): [PMID: 31075940]
  40. Sci Rep. 2021 Mar 18;11(1):6225 [PMID: 33737602]
  41. Sci Rep. 2016 May 13;6:25904 [PMID: 27174456]
  42. Front Microbiol. 2019 May 24;10:1160 [PMID: 31178852]
  43. PLoS One. 2019 Jun 6;14(6):e0216676 [PMID: 31170191]
  44. Molecules. 2020 Aug 24;25(17): [PMID: 32847059]
  45. Front Microbiol. 2017 Dec 07;8:2409 [PMID: 29375486]
  46. J Antimicrob Chemother. 1998 Jan;41(1):49-57 [PMID: 9511037]
  47. Nat Rev Microbiol. 2014 Jul;12(7):465-78 [PMID: 24861036]
  48. Int J Gen Med. 2018 Jan 18;11:25-32 [PMID: 29403304]
  49. Am J Kidney Dis. 2007 Aug;50(2):289-95 [PMID: 17660030]
  50. Molecules. 2016 Sep 12;21(9): [PMID: 27626405]
  51. Antimicrob Agents Chemother. 2004 Dec;48(12):4673-9 [PMID: 15561843]
  52. Invest Ophthalmol Vis Sci. 2013 Jan 07;54(1):175-82 [PMID: 23211820]
  53. BMC Microbiol. 2011 May 23;11:114 [PMID: 21605457]
  54. Antibiotics (Basel). 2020 Sep 02;9(9): [PMID: 32887236]
  55. Biomaterials. 2011 Jun;32(16):3899-909 [PMID: 21377727]
  56. J Dent Res. 2017 Mar;96(3):254-260 [PMID: 27872334]
  57. Antimicrob Agents Chemother. 1998 Jan;42(1):121-8 [PMID: 9449271]
  58. Front Microbiol. 2018 Nov 27;9:2749 [PMID: 30538678]
  59. ACS Comb Sci. 2013 May 13;15(5):217-28 [PMID: 23573835]
  60. Antibiotics (Basel). 2019 Oct 04;8(4): [PMID: 31590240]

Grants

  1. DP160101664/Australian Research Council

Word Cloud

Created with Highcharts 10.0.0ciprofloxacinmelimineresistancebiofilmsaloneMIC0biofilmpeptidesMel4released30cellsATPdevelopedtimeseffect1X<001combinationeither2XcandevelopmutationtransfectionformationResistanceinducedgrowthsub-inhibitoryconcentrationsdaysabilityantimicrobialsdisruptdeterminedusingcrystalvioletlive/deadstainingEffectscellmembranesevaluatedmeasuringreleasedyesnucleicacidsNonestrainsAMPsATCC25923128passagesreducedciprofloxacin-resistantantibiofilm27%Similarlyproduced48%disruptionCombinations66nMpeptide005DNA/RNAthree=043resultssuggestpotentialuseconventionalantibioticstreatmentEnhancementAntibiofilmActivityCiprofloxacinAdministrationAntimicrobialPeptidesStaphylococcusaureusantibioticantimicrobialcombined

Similar Articles

Cited By (7)