Therapeutic Effect of an Antibody-Derived Peptide in a Model of Systemic Candidiasis.

Emerenziana Ottaviano, Elisa Borghi, Laura Giovati, Monica Falleni, Delfina Tosi, Walter Magliani, Giulia Morace, Stefania Conti, Tecla Ciociola
Author Information
  1. Emerenziana Ottaviano: Department of Health Sciences, University of Milan, 20142 Milan, Italy. ORCID
  2. Elisa Borghi: Department of Health Sciences, University of Milan, 20142 Milan, Italy. ORCID
  3. Laura Giovati: Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy. ORCID
  4. Monica Falleni: Department of Health Sciences, University of Milan, 20142 Milan, Italy.
  5. Delfina Tosi: Department of Health Sciences, University of Milan, 20142 Milan, Italy. ORCID
  6. Walter Magliani: Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
  7. Giulia Morace: Department of Health Sciences, University of Milan, 20142 Milan, Italy.
  8. Stefania Conti: Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy. ORCID
  9. Tecla Ciociola: Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy. ORCID

Abstract

The synthetic peptide T11F (TCRVDHRGLTF), with sequence identical to a fragment of the constant region of human IgM, and most of its alanine-substituted derivatives proved to possess a significant candidacidal activity in vitro. In this study, the therapeutic efficacy of T11F, D5A, the derivative most active in vitro, and F11A, characterized by a different conformation, was investigated in larvae infected with . A single injection of F11A and D5A derivatives, in contrast with T11F, led to a significant increase in survival of larvae injected with a lethal inoculum of cells, in comparison with infected animals treated with saline. Peptide modulation of host immunity upon infection was determined by hemocyte analysis and larval histology, highlighting a different immune stimulation by the studied peptides. F11A, particularly, was the most active in eliciting nodule formation, melanization and fat body activation, leading to a better control of yeast infection. Overall, the obtained data suggest a double role for F11A, able to simultaneously target the fungus and the host immune system, resulting in a more efficient pathogen clearance.

Keywords

References

  1. Nat Rev Immunol. 2011 Apr;11(4):275-88 [PMID: 21394104]
  2. FEBS J. 2009 Nov;276(22):6497-508 [PMID: 19817855]
  3. Front Immunol. 2020 Sep 17;11:2177 [PMID: 33072081]
  4. Microorganisms. 2021 Jan 10;9(1): [PMID: 33435157]
  5. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 5;791(1-2):345-56 [PMID: 12798194]
  6. J Fungi (Basel). 2017 Oct 18;3(4): [PMID: 29371573]
  7. Crit Rev Microbiol. 2021 May;47(3):275-289 [PMID: 33513315]
  8. Antimicrob Agents Chemother. 2005 Jul;49(7):2583-8 [PMID: 15980323]
  9. Protein Pept Lett. 2020;27(2):120-134 [PMID: 31553285]
  10. Microorganisms. 2020 Oct 21;8(10): [PMID: 33096923]
  11. Eur J Histochem. 2014 Sep 23;58(3):2428 [PMID: 25308852]
  12. Open Forum Infect Dis. 2020 Jan 12;7(2):ofaa016 [PMID: 32099843]
  13. Mycopathologia. 2021 Oct;186(5):665-672 [PMID: 34268702]
  14. mSphere. 2019 Jan 23;4(1): [PMID: 30674648]
  15. Antimicrob Agents Chemother. 2003 Feb;47(2):643-52 [PMID: 12543672]
  16. Eukaryot Cell. 2015 Aug;14(8):834-44 [PMID: 26092919]
  17. mBio. 2020 Nov 3;11(6): [PMID: 33144376]
  18. Peptides. 2015 Sep;71:211-21 [PMID: 26238597]
  19. PLoS Pathog. 2012 Feb;8(2):e1002451 [PMID: 22319439]
  20. Int J Mol Sci. 2018 Nov 28;19(12): [PMID: 30487461]
  21. J Fungi (Basel). 2020 Oct 23;6(4): [PMID: 33113935]
  22. Mini Rev Med Chem. 2020;20(4):260-268 [PMID: 31556857]
  23. Pathog Dis. 2020 Dec 9;78(9): [PMID: 33232457]
  24. Future Microbiol. 2015;10(7):1163-75 [PMID: 26119210]
  25. FEMS Microbiol Rev. 2017 May 1;41(3):323-342 [PMID: 28521337]
  26. Science. 2015 Mar 27;347(6229):1414-6 [PMID: 25814567]
  27. Pharmacol Ther. 2019 Mar;195:21-38 [PMID: 30347212]
  28. Future Med Chem. 2016 Aug;8(12):1413-33 [PMID: 27502155]
  29. Expert Rev Anti Infect Ther. 2007 Dec;5(6):1007-17 [PMID: 18039084]
  30. Microbiol Spectr. 2016 Oct;4(5): [PMID: 27763259]
  31. Molecules. 2021 Jun 05;26(11): [PMID: 34198909]
  32. Eukaryot Cell. 2014 Aug;13(8):958-64 [PMID: 24951439]
  33. Infect Genet Evol. 2014 Jun;24:25-33 [PMID: 24614506]
  34. Appl Microbiol Biotechnol. 2021 Jul;105(13):5259-5279 [PMID: 34151414]
  35. Mycoses. 2021 Mar;64(3):232-244 [PMID: 33098146]
  36. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  37. Front Cell Infect Microbiol. 2020 Mar 17;10:105 [PMID: 32257965]
  38. Infect Dis Clin North Am. 2021 Jun;35(2):341-371 [PMID: 34016281]
  39. PLoS One. 2012;7(3):e34105 [PMID: 22470523]
  40. mBio. 2020 May 5;11(3): [PMID: 32371596]
  41. Front Microbiol. 2019 Feb 12;10:214 [PMID: 30809213]
  42. FEMS Yeast Res. 2010 Aug 1;10(5):579-86 [PMID: 20491945]
  43. Front Pharmacol. 2019 Feb 05;10:80 [PMID: 30804788]
  44. Antimicrob Agents Chemother. 2021 Jan 20;65(2): [PMID: 33229427]
  45. Cell Mol Life Sci. 2013 Oct;70(19):3545-70 [PMID: 23381653]
  46. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2435-42 [PMID: 26856836]
  47. FEMS Yeast Res. 2020 Jun 1;20(4): [PMID: 32353872]
  48. J Microbiol. 2021 Feb;59(2):113-123 [PMID: 33527313]
  49. Biochem J. 2005 Jun 1;388(Pt 2):689-95 [PMID: 15707390]
  50. Immunol Invest. 2011;40(7-8):809-24 [PMID: 21985307]
  51. Front Immunol. 2020 May 22;11:983 [PMID: 32528474]
  52. J Fungi (Basel). 2018 Nov 27;4(4): [PMID: 30486393]

MeSH Term

Animals
Candida albicans
Candidiasis
Disease Models, Animal
Hemocytes
Humans
Immunoglobulin M
Larva
Microbial Viability
Moths
Peptides
Survival Analysis
Treatment Outcome

Chemicals

Immunoglobulin M
Peptides

Word Cloud

Created with Highcharts 10.0.0F11ApeptidesT11FderivativessignificantvitroD5AactivedifferentlarvaeinfectedPeptidehostinfectionimmunesyntheticpeptideTCRVDHRGLTFsequenceidenticalfragmentconstantregionhumanIgMalanine-substitutedprovedpossesscandidacidalactivitystudytherapeuticefficacyderivativecharacterizedconformationinvestigatedsingleinjectioncontrastledincreasesurvivalinjectedlethalinoculumcellscomparisonanimalstreatedsalinemodulationimmunityupondeterminedhemocyteanalysislarvalhistologyhighlightingstimulationstudiedparticularlyelicitingnoduleformationmelanizationfatbodyactivationleadingbettercontrolyeastOverallobtaineddatasuggestdoubleroleablesimultaneouslytargetfungussystemresultingefficientpathogenclearanceTherapeuticEffectAntibody-DerivedModelSystemicCandidiasisGalleriamellonellaantibody-derivedantifungalimmunomodulatory

Similar Articles

Cited By