Modeling Traumatic Brain Injury in Human Cerebral Organoids.

Santiago Ramirez, Abhisek Mukherjee, Sofia Sepulveda, Andrea Becerra-Calixto, Nicolas Bravo-Vasquez, Camila Gherardelli, Melissa Chavez, Claudio Soto
Author Information
  1. Santiago Ramirez: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA. ORCID
  2. Abhisek Mukherjee: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.
  3. Sofia Sepulveda: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.
  4. Andrea Becerra-Calixto: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.
  5. Nicolas Bravo-Vasquez: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA. ORCID
  6. Camila Gherardelli: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.
  7. Melissa Chavez: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.
  8. Claudio Soto: Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA.

Abstract

Traumatic brain injury (TBI) is a head injury that disrupts the normal brain structure and function. TBI has been extensively studied using various in vitro and in vivo models. Most of the studies have been done with rodent models, which may respond differently to TBI than human nerve cells. Taking advantage of the recent development of cerebral organoids (COs) derived from human induced pluripotent stem cells (iPSCs), which resemble the architecture of specific human brain regions, here, we adapted the controlled cortical impact (CCI) model to induce TBI in human COs as a novel in vitro platform. To adapt the CCI procedure into COs, we have developed a phantom brain matrix, matching the mechanical characteristics of the brain, altogether with an empty mouse skull as a platform to allow the use of the stereotactic CCI equipment on COs. After the CCI procedure, COs were histologically prepared to evaluate neurons and astrocyte populations using the microtubule-associated protein 2 (MAP2) and the glial fibrillary acidic protein (GFAP). Moreover, a marker of metabolic response, the neuron-specific enolase (NSE), and cellular death using cleaved caspase 3 were also analyzed. Our results show that human COs recapitulate the primary pathological changes of TBI, including metabolic alterations related to neuronal damage, neuronal loss, and astrogliosis. This novel approach using human COs to model TBI in vitro holds great potential and opens new alternatives for understanding brain abnormalities produced by TBI, and for the development and testing of new therapeutic approaches.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672-7 [PMID: 26644564]
  2. Brain Sci. 2017 Jul 20;7(7): [PMID: 28726717]
  3. Neuron. 2018 Jun 27;98(6):1141-1154.e7 [PMID: 29861287]
  4. Nat Methods. 2017 Jul;14(7):743-751 [PMID: 28504681]
  5. J Neurochem. 2000 Feb;74(2):740-53 [PMID: 10646526]
  6. MMWR Morb Mortal Wkly Rep. 2019 Mar 15;68(10):237 [PMID: 31851644]
  7. Exp Neurol. 2016 Jan;275 Pt 3:305-315 [PMID: 25828533]
  8. Mol Neurobiol. 2017 Nov;54(9):6681-6696 [PMID: 27744570]
  9. Adv Exp Med Biol. 2015;867:125-43 [PMID: 26530364]
  10. Sci Transl Med. 2012 May 16;4(134):134ra60 [PMID: 22593173]
  11. Ann Neurosci. 2013 Jul;20(3):118-22 [PMID: 25206029]
  12. Brain Inj. 2012;26(12):1472-81 [PMID: 22721420]
  13. Science. 2016 May 13;352(6287):816-8 [PMID: 27064148]
  14. Front Neuroenergetics. 2013 Oct 04;5:8 [PMID: 24109452]
  15. Sci Rep. 2016 Sep 27;6:34097 [PMID: 27671211]
  16. Nature. 2019 Sep;573(7772):61-68 [PMID: 31435019]
  17. J Biomech. 2019 Jul 19;92:84-91 [PMID: 31151795]
  18. Front Neurol. 2016 Aug 17;7:134 [PMID: 27582726]
  19. Stem Cell Reports. 2019 May 14;12(5):890-905 [PMID: 31091434]
  20. Neurosciences (Riyadh). 2013 Jul;18(3):222-34 [PMID: 23887212]
  21. Mol Psychiatry. 2018 Dec;23(12):2363-2374 [PMID: 30171212]
  22. Nat Methods. 2019 Nov;16(11):1169-1175 [PMID: 31591580]
  23. Cell. 2019 Feb 7;176(4):743-756.e17 [PMID: 30735633]
  24. Nat Neurosci. 2020 Dec;23(12):1496-1508 [PMID: 33139941]
  25. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  26. Nat Rev Neurol. 2013 Feb;9(2):106-18 [PMID: 23296339]
  27. Neuron. 2017 Apr 19;94(2):278-293.e9 [PMID: 28426964]
  28. Front Mol Neurosci. 2017 Apr 03;10:88 [PMID: 28420961]
  29. Brain Pathol. 2015 May;25(3):350-64 [PMID: 25904048]
  30. NeuroRehabilitation. 2007;22(5):341-53 [PMID: 18162698]
  31. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  32. Cell Rep. 2016 Dec 20;17(12):3369-3384 [PMID: 28009303]
  33. Neurology. 2000 Mar 28;54(6):1316-23 [PMID: 10746604]
  34. Mol Cell Neurosci. 2015 May;66(Pt B):75-80 [PMID: 25748121]
  35. Annu Rev Biomed Eng. 2011 Aug 15;13:91-126 [PMID: 21529164]
  36. Cell. 2015 Jul 16;162(2):375-390 [PMID: 26186191]
  37. J Neurosci. 2009 Mar 11;29(10):3276-87 [PMID: 19279265]
  38. J Neurotrauma. 2000 Oct;17(10):927-38 [PMID: 11063058]
  39. Exp Ther Med. 2017 Sep;14(3):1905-1908 [PMID: 28962102]
  40. Cerebrum. 2012 Jul;2012:9 [PMID: 23447795]
  41. Dev Cell. 2016 Mar 21;36(6):624-38 [PMID: 27003936]
  42. J Neurotrauma. 2020 Jan 1;37(1):80-92 [PMID: 31317824]
  43. Cell. 2016 May 19;165(5):1238-1254 [PMID: 27118425]
  44. Stem Cell Res. 2018 Oct;32:126-134 [PMID: 30278374]
  45. Nature. 2019 Jun;570(7762):523-527 [PMID: 31168097]
  46. PLoS One. 2016 Sep 13;11(9):e0161969 [PMID: 27622770]
  47. Crit Care. 2016 Sep 08;20:285 [PMID: 27604350]
  48. Indian J Psychol Med. 2017 Mar-Apr;39(2):114-121 [PMID: 28515545]
  49. Curr Opin Biomed Eng. 2020 Jun;14:52-58 [PMID: 35434439]
  50. Front Neuroanat. 2011 May 16;5:29 [PMID: 21647212]
  51. Neuron. 2012 Dec 6;76(5):886-99 [PMID: 23217738]
  52. PLoS Biol. 2020 May 13;18(5):e3000705 [PMID: 32401820]
  53. JCI Insight. 2018 Jan 11;3(1): [PMID: 29321373]
  54. J Neurochem. 2015 Oct;135(2):234-48 [PMID: 26118771]
  55. Stem Cell Reports. 2018 Apr 10;10(4):1294-1307 [PMID: 29606617]
  56. Nat Rev Neurosci. 2013 Feb;14(2):128-42 [PMID: 23329160]
  57. Childs Nerv Syst. 2019 Feb;35(2):343-348 [PMID: 30171330]
  58. Br J Pharmacol. 2016 Feb;173(4):692-702 [PMID: 25752446]
  59. J Neurosurg. 2004 Aug;101(2):314-22 [PMID: 15309925]
  60. Br J Anaesth. 2007 Jul;99(1):4-9 [PMID: 17573392]
  61. Expert Opin Emerg Drugs. 2009 Mar;14(1):67-84 [PMID: 19249984]
  62. J Neurotrauma. 1988;5(1):1-15 [PMID: 3193461]
  63. Brain. 2006 Oct;129(Pt 10):2761-72 [PMID: 16825202]
  64. Neurosurg Focus. 2010 Jan;28(1):E9 [PMID: 20043724]

Grants

  1. RF1 AG061901/NIA NIH HHS
  2. R01 AG061069/NIA NIH HHS
  3. AZ160082/U.S. Department of Defense

MeSH Term

Animals
Apoptosis
Brain
Brain Injuries, Traumatic
Chronic Disease
Constriction, Pathologic
Disease Models, Animal
Gliosis
Humans
Induced Pluripotent Stem Cells
Mice, Inbred C57BL
Neurons
Organoids
Phantoms, Imaging
Mice

Word Cloud

Created with Highcharts 10.0.0brainTBICOshumanusingCCIinjuryvitroTraumaticmodelscellsdevelopmentcerebralorganoidsmodelnovelplatformprocedureproteinmetabolicneuronalnewdiseaseheaddisruptsnormalstructurefunctionextensivelystudiedvariousvivostudiesdonerodentmayresponddifferentlynerveTakingadvantagerecentderivedinducedpluripotentstemiPSCsresemblearchitecturespecificregionsadaptedcontrolledcorticalimpactinduceadaptdevelopedphantommatrixmatchingmechanicalcharacteristicsaltogetheremptymouseskullallowusestereotacticequipmenthistologicallypreparedevaluateneuronsastrocytepopulationsmicrotubule-associated2MAP2glialfibrillaryacidicGFAPMoreovermarkerresponseneuron-specificenolaseNSEcellulardeathcleavedcaspase3alsoanalyzedresultsshowrecapitulateprimarypathologicalchangesincludingalterationsrelateddamagelossastrogliosisapproachholdsgreatpotentialopensalternativesunderstandingabnormalitiesproducedtestingtherapeuticapproachesModelingBrainInjuryHumanCerebralOrganoidsAlzheimer’samyloidplaquesmodelingneurofibrillarytanglestraumatic

Similar Articles

Cited By