Insight Into Ecology, Metabolic Potential, and the Taxonomic Composition of Bacterial Communities in the Periodic Water Pond on King George Island (Antarctica).

Tomasz Krucon, Lukasz Dziewit, Lukasz Drewniak
Author Information
  1. Tomasz Krucon: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
  2. Lukasz Dziewit: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
  3. Lukasz Drewniak: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.

Abstract

Polar regions contain a wide variety of lentic ecosystems. These include periodic ponds that have a significant impact on carbon and nitrogen cycling in polar environments. This study was conducted to assess the taxonomic and metabolic diversity of bacteria found in Antarctic pond affected by penguins and sea elephants and to define their role in ongoing processes. Metabolic assays showed that of the 168 tested heterotrophic bacteria present in the Antarctic periodic pond, 96% are able to degrade lipids, 30% cellulose, 26% proteins, and 26% starch. The taxonomic classification of the obtained isolates differs from that based on the composition of the 16S rRNA relative abundances in the studied pond. The dominant constituting 45% of isolates represents a low proportion of the community, around 4%. With the addition of run-off, the proportions of inhabiting bacteria changed, including a significant decrease in the abundance of , from 2.38 to 0.33%, increase of from 9.32 to 19.18%, and a decreasing richness (Chao1 index from 1299 to 889) and diversity (Shannon index from 4.73 to 4.20). Comparative studies of communities found in different Antarctic environments indicate a great role for penguins in shaping bacterial populations.

Keywords

References

  1. Int J Environ Res Public Health. 2021 Feb 05;18(4): [PMID: 33562609]
  2. Front Microbiol. 2019 May 10;10:1019 [PMID: 31134036]
  3. Sci Total Environ. 2020 Jun 1;719:137387 [PMID: 32114229]
  4. Appl Environ Microbiol. 1982 Apr;43(4):777-80 [PMID: 7081984]
  5. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  6. FEMS Microbiol Ecol. 2014 Aug;89(2):451-64 [PMID: 24862286]
  7. FEMS Microbiol Ecol. 2014 Aug;89(2):222-37 [PMID: 24433483]
  8. Pac Symp Biocomput. 2012;:235-46 [PMID: 22174279]
  9. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  10. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  11. Genome Biol Evol. 2016 May 13;8(5):1388-400 [PMID: 27190206]
  12. Syst Appl Microbiol. 2001 Apr;24(1):44-53 [PMID: 11403398]
  13. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  14. J Pathol Bacteriol. 1960 Oct;80:379-90 [PMID: 13785567]
  15. PLoS One. 2017 Apr 24;12(4):e0176397 [PMID: 28437480]
  16. Front Microbiol. 2011 May 30;2:93 [PMID: 21747801]
  17. J Bacteriol. 1941 May;41(5):653-73 [PMID: 16560430]
  18. FEMS Microbiol Ecol. 2016 Apr;92(4):fnw038 [PMID: 26902803]
  19. Microorganisms. 2021 Feb 17;9(2): [PMID: 33671443]
  20. Water Res. 2016 Oct 1;102:158-169 [PMID: 27340817]
  21. Front Microbiol. 2018 Apr 03;9:552 [PMID: 29666609]
  22. Sci Rep. 2018 Jun 22;8(1):9535 [PMID: 29934641]
  23. Sci Prog. 1996;79 ( Pt 2):119-57 [PMID: 8828407]
  24. PLoS One. 2017 Jun 20;12(6):e0179390 [PMID: 28632790]
  25. Microb Ecol. 1989 Mar;17(2):137-41 [PMID: 24197242]
  26. Front Microbiol. 2020 Jun 03;11:1165 [PMID: 32582104]
  27. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  28. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13591-6 [PMID: 26438854]
  29. Front Microbiol. 2021 Feb 16;12:628792 [PMID: 33664717]
  30. Food Sci Nutr. 2019 Feb 17;7(3):937-948 [PMID: 30918636]
  31. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  32. Bioinformatics. 2014 Nov 1;30(21):3123-4 [PMID: 25061070]
  33. Environ Microbiome. 2020 May 18;15(1):11 [PMID: 33902725]
  34. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5859-64 [PMID: 19321416]
  35. J Appl Microbiol. 2004;97(3):640-6 [PMID: 15281946]
  36. Biosci Biotechnol Biochem. 2012;76(3):620-3 [PMID: 22451414]
  37. Microorganisms. 2020 Apr 02;8(4): [PMID: 32252494]
  38. Front Microbiol. 2020 May 28;11:1016 [PMID: 32547511]
  39. BMC Bioinformatics. 2012 Feb 14;13:31 [PMID: 22333067]
  40. Front Microbiol. 2015 May 27;6:485 [PMID: 26074890]
  41. Sci Total Environ. 2020 Apr 20;714:136714 [PMID: 31978775]
  42. J Ind Microbiol Biotechnol. 2009 May;36(5):747-56 [PMID: 19283419]
  43. Gut Microbes. 2012 Jul-Aug;3(4):289-306 [PMID: 22572875]
  44. Appl Environ Microbiol. 2013 Mar;79(6):1897-905 [PMID: 23315724]
  45. Anal Biochem. 1987 Jan;160(1):47-56 [PMID: 2952030]
  46. Front Microbiol. 2018 Jun 06;9:1201 [PMID: 29928265]
  47. Microb Ecol. 2011 Aug;62(2):399-413 [PMID: 21424822]
  48. Microb Ecol. 2001 Oct;42(3):338-349 [PMID: 12024259]
  49. Front Microbiol. 2020 Jul 31;11:1783 [PMID: 32849402]
  50. Int J Microbiol. 2012;2012:578925 [PMID: 22315612]
  51. Biochim Biophys Acta. 2000 Nov 15;1488(3):211-8 [PMID: 11082531]
  52. Appl Environ Microbiol. 1993 Mar;59(3):695-700 [PMID: 7683183]
  53. Sci Adv. 2019 Nov 27;5(11):eaaz0888 [PMID: 31807713]
  54. Appl Environ Microbiol. 1996 Mar;62(3):766-71 [PMID: 8975607]
  55. FEMS Microbiol Ecol. 2020 May 1;96(5): [PMID: 32239205]
  56. J Eukaryot Microbiol. 2004 Mar-Apr;51(2):139-44 [PMID: 15134248]
  57. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]

Word Cloud

Created with Highcharts 10.0.0diversitybacteriaAntarcticpondperiodicsignificantenvironmentstaxonomicmetabolicfoundpenguinsroleMetabolic26%isolatesindex4bacterialKingGeorgeIslandAntarcticaPolarregionscontainwidevarietylenticecosystemsincludepondsimpactcarbonnitrogencyclingpolarstudyconductedassessaffectedseaelephantsdefineongoingprocessesassaysshowed168testedheterotrophicpresent96%abledegradelipids30%celluloseproteinsstarchclassificationobtaineddiffersbasedcomposition16SrRNArelativeabundancesstudieddominantconstituting45%representslowproportioncommunityaround4%additionrun-offproportionsinhabitingchangedincludingdecreaseabundance238033%increase9321918%decreasingrichnessChao11299889Shannon7320ComparativestudiescommunitiesdifferentindicategreatshapingpopulationsInsightEcologyPotentialTaxonomicCompositionBacterialCommunitiesPeriodicWaterPondpropertiespsychrotolerants

Similar Articles

Cited By