Bacterial Inhibition on Contributes to Microbiota Stability in .

Fangyuan Zhou, Yunxiao Gao, Mei Liu, Letian Xu, Xiaoqing Wu, Xiaoyan Zhao, Xinjian Zhang
Author Information
  1. Fangyuan Zhou: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
  2. Yunxiao Gao: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
  3. Mei Liu: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
  4. Letian Xu: State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
  5. Xiaoqing Wu: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
  6. Xiaoyan Zhao: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
  7. Xinjian Zhang: Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.

Abstract

Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among , its associated microbiota, and one pathogen , the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that neither infect larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of . According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked conidia and stabilized the associated microbiota of larvae during invasion. The findings deepened the understanding of the role of associated microbiota-pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.

Keywords

References

  1. Sci Rep. 2019 Apr 23;9(1):6435 [PMID: 31015559]
  2. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 [PMID: 18695234]
  3. ISME J. 2015 Aug;9(8):1793-801 [PMID: 25658054]
  4. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  5. Nature. 2013 Sep 19;501(7467):426-9 [PMID: 23955152]
  6. Animals (Basel). 2021 Jun 29;11(7): [PMID: 34209689]
  7. Zoolog Sci. 2021 Jun;38(3):213-222 [PMID: 34057345]
  8. Sci Rep. 2016 Feb 03;6:20135 [PMID: 26839264]
  9. mSystems. 2020 Nov 17;5(6): [PMID: 33203688]
  10. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  11. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  12. Sci Total Environ. 2020 Jan 10;699:134181 [PMID: 31520944]
  13. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19288-92 [PMID: 22084077]
  14. J Econ Entomol. 2021 Apr 13;114(2):937-946 [PMID: 33459777]
  15. Sci Total Environ. 2021 Jun 1;771:144880 [PMID: 33736123]
  16. Arch Insect Biochem Physiol. 2018 Oct;99(2):e21501 [PMID: 30120789]
  17. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  18. Curr Opin Microbiol. 2006 Aug;9(4):359-64 [PMID: 16777473]
  19. Pest Manag Sci. 2019 Jan;75(1):170-179 [PMID: 29797399]
  20. Microb Ecol. 2011 May;61(4):759-68 [PMID: 21249352]
  21. Front Microbiol. 2019 May 31;10:1178 [PMID: 31244787]
  22. Antonie Van Leeuwenhoek. 2012 Feb;101(2):443-7 [PMID: 21748399]
  23. Curr Opin Microbiol. 2019 Jun;49:97-102 [PMID: 31734603]
  24. ISME J. 2017 Dec;11(12):2809-2820 [PMID: 28800134]
  25. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  26. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  27. J Exp Biol. 2001 Jan;204(Pt 2):349-58 [PMID: 11136620]
  28. Front Microbiol. 2018 Jun 14;9:1251 [PMID: 29963021]
  29. Benef Microbes. 2018 Feb 27;9(2):279-290 [PMID: 29264966]
  30. Curr Biol. 2005 Mar 8;15(5):475-9 [PMID: 15753044]
  31. ISME J. 2010 Jan;4(1):17-27 [PMID: 19710709]
  32. J Exp Biol. 2020 Oct 12;223(Pt 19): [PMID: 33046577]
  33. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  34. Annu Rev Entomol. 2015 Jan 7;60:17-34 [PMID: 25341109]
  35. Nat Commun. 2019 Jan 31;10(1):516 [PMID: 30705269]
  36. Front Microbiol. 2019 Jan 09;9:3316 [PMID: 30687292]
  37. ISME J. 2019 Mar;13(3):676-685 [PMID: 30333525]
  38. J Evol Biol. 2014 Dec;27(12):2695-705 [PMID: 25403559]
  39. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5994-5999 [PMID: 28533370]
  40. Behav Genet. 2019 Jan;49(1):83-98 [PMID: 30456532]
  41. Environ Entomol. 2014 Jun;43(3):612-6 [PMID: 24780240]
  42. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2020-E2029 [PMID: 29444867]
  43. Sci China Life Sci. 2017 Aug;60(8):902-910 [PMID: 28762123]
  44. Sci Total Environ. 2020 Nov 25;745:140873 [PMID: 32758760]
  45. Environ Entomol. 2013 Jun;42(3):453-9 [PMID: 23726054]
  46. Cell Chem Biol. 2017 Jan 19;24(1):66-75 [PMID: 28107652]
  47. Microbiome. 2018 Jul 27;6(1):132 [PMID: 30053907]
  48. Elife. 2020 Nov 03;9: [PMID: 33138912]
  49. Int J Food Microbiol. 2006 Apr 25;108(2):286-91 [PMID: 16673468]
  50. Appl Microbiol Biotechnol. 2012 Sep;95(5):1155-63 [PMID: 22782253]
  51. Phytopathology. 2009 Mar;99(3):258-64 [PMID: 19203278]
  52. Dev Comp Immunol. 2018 Nov;88:65-69 [PMID: 30017857]
  53. Annu Rev Phytopathol. 2009;47:63-82 [PMID: 19400650]
  54. Dev Comp Immunol. 2019 Oct;99:103399 [PMID: 31195052]

Word Cloud

Created with Highcharts 10.0.0microbiotaassociatedinteractionbacterialfungalconidialgerminationmycelialgrowthstablebiologicalstabilityinvestigatedpathogenresponsealsoshowedlarvaeinvasionresultsGivenmultiplerolesimprovinganimalhostfitnessmicrobialenvironmentincreasingnumbersresearchersfocusedkeepscomplexenvironmentalfactorsespeciallyonesRecentstudiesshowinteractspathogenicmicrobesHoweverwhetherinfluencelimitedlyBasedamongonemicrobiota'sdeterminedstudyBesidesunderlyingmechanismpreliminarilyResultsneitherinfectcolonizeinsidekeptexperimentsalmostcompletelyinhibitedinhibitAccordingindividualdominantspeciesisolatedinhibitionreconfirmedThusindicatedinsteadblockedconidiastabilizedfindingsdeepenedunderstandingrolemicrobiota-pathogenmicrobemaintainingmaycontributedevelopmentnovelcontrolagentspestmanagementstrategiesBacterialInhibitionContributesMicrobiotaStabilityanimal-microbesymbiosisantifungaldefensiveassociationinsect-microbeonionmaggot

Similar Articles

Cited By