Metabolite Profiling and Transcriptome Analysis Explains Difference in Accumulation of Bioactive Constituents in Licorice () Under Salt Stress.

Chengcheng Wang, Lihong Chen, Zhichen Cai, Cuihua Chen, Zixiu Liu, Shengjin Liu, Lisi Zou, Mengxia Tan, Jiali Chen, Xunhong Liu, Yuqi Mei, Lifang Wei, Juan Liang, Jine Chen
Author Information
  1. Chengcheng Wang: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  2. Lihong Chen: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  3. Zhichen Cai: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  4. Cuihua Chen: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  5. Zixiu Liu: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  6. Shengjin Liu: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  7. Lisi Zou: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  8. Mengxia Tan: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  9. Jiali Chen: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  10. Xunhong Liu: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  11. Yuqi Mei: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  12. Lifang Wei: School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
  13. Juan Liang: School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China.
  14. Jine Chen: School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China.

Abstract

Salinity stress significantly affects the contents of bioactive constituents in licorice . To elucidate the molecular mechanism underlying the difference in the accumulation of these constituents under sodium chloride (NaCl, salt) stress, licorice seedlings were treated with NaCl and then subjected to an integrated transcriptomic and metabolite profiling analysis. The transcriptomic analysis results identified 3,664 differentially expressed genes (DEGs) including transcription factor family MYB and basic helix-loop-helix (). Most DEGs were involved in flavonoid and terpenoid biosynthesis pathways. In addition, 121 compounds including a triterpenoid and five classes of flavonoids (isoflavone, flavone, flavanone, isoflavan, and chalcone) were identified, and their relative levels were compared between the stressed and control groups using data from the ultrafast liquid chromatography (UFLC)-triple quadrupole-time of flight-tandem mass spectrometry (TOF-MS/MS) analysis. Putative biosynthesis networks of the flavonoids and triterpenoids were created and combined with structural DEGs such as phenylalanine ammonia-lyase (), 4-coumarate-CoA ligase [], cinnamate 4-hydroxylase [], chalcone synthase [], chalcone-flavanone isomerase [], and flavonoid-3',5' hydroxylase ('') for flavonoids, and and for glycyrrhizin biosynthesis. Notably, significant upregulation of UDP-glycosyltransferase genes () in salt-stressed licorice indicated that postmodification of glycosyltransferase may participate in downstream biosynthesis of flavonoid glycosides and triterpenoid saponins. Accordingly, the expression trend of the DEGs is positively correlated with the accumulation of glycosides. Our study findings indicate that key DEGs and crucial genes co-regulate flavonoid and saponin biosynthesis in licorice under salt stress.

Keywords

References

  1. Plant Cell. 2011 Nov;23(11):4112-23 [PMID: 22128119]
  2. Food Chem. 2017 Apr 15;221:959-968 [PMID: 27979300]
  3. J Agric Food Chem. 2019 Oct 9;67(40):11262-11276 [PMID: 31509416]
  4. Mol Genet Genomics. 2004 Nov;272(4):411-9 [PMID: 15503141]
  5. Biol Pharm Bull. 2015;38(1):75-81 [PMID: 25744461]
  6. Mol Biol Rep. 2013 Feb;40(2):1265-74 [PMID: 23070917]
  7. Anal Chem. 2017 Mar 7;89(5):3146-3153 [PMID: 28192986]
  8. New Phytol. 2016 Oct;212(1):123-35 [PMID: 27252088]
  9. Plant Cell Physiol. 2013 May;54(5):697-710 [PMID: 23589666]
  10. Food Chem. 2020 Apr 20;325:126866 [PMID: 32387982]
  11. J Agric Food Chem. 2016 Oct 5;64(39):7315-7324 [PMID: 27626287]
  12. R Soc Open Sci. 2019 Oct 9;6(10):191121 [PMID: 31824719]
  13. PLoS One. 2015 Sep 14;10(9):e0137925 [PMID: 26367395]
  14. Am J Chin Med. 2020;48(1):17-45 [PMID: 31931596]
  15. Acta Pharm Sin B. 2015 Jul;5(4):310-5 [PMID: 26579460]
  16. J Plant Physiol. 2013 Nov 1;170(16):1461-5 [PMID: 23809151]
  17. Plant Cell Physiol. 2015 Aug;56(8):1463-71 [PMID: 25951908]
  18. J Agric Food Chem. 2019 Jan 9;67(1):148-158 [PMID: 30563335]
  19. J Agric Food Chem. 2020 Feb 5;68(5):1480-1493 [PMID: 31899641]
  20. Nat Biotechnol. 2001 May;19(5):470-4 [PMID: 11329019]
  21. Plant J. 2019 Sep;99(6):1127-1143 [PMID: 31095780]
  22. Plant Physiol Biochem. 2013 Dec;73:176-88 [PMID: 24128694]
  23. Chem Pharm Bull (Tokyo). 2019;67(10):1104-1115 [PMID: 31582630]
  24. Int J Mol Sci. 2018 Oct 05;19(10): [PMID: 30301190]
  25. Nat Commun. 2020 Nov 16;11(1):5664 [PMID: 33199711]
  26. Food Chem. 2020 Mar 30;309:125692 [PMID: 31670119]
  27. Annu Rev Plant Biol. 2014;65:225-57 [PMID: 24498976]
  28. Chem Soc Rev. 2015 Nov 21;44(22):8350-74 [PMID: 26330279]
  29. Curr Med Chem. 2001 Sep;8(11):1303-28 [PMID: 11562268]
  30. Front Plant Sci. 2021 Jun 18;12:680368 [PMID: 34220900]
  31. Curr Opin Plant Biol. 2014 Jun;19:27-34 [PMID: 24709279]
  32. Plant Mol Biol. 1998 Oct;38(3):467-79 [PMID: 9747854]
  33. J Agric Food Chem. 2018 Dec 26;66(51):13541-13551 [PMID: 30525579]
  34. Sci Rep. 2018 Apr 18;8(1):6144 [PMID: 29670187]
  35. ACS Synth Biol. 2019 Aug 16;8(8):1858-1866 [PMID: 31284719]
  36. Biotechnol Adv. 2020 Jan - Feb;38:107316 [PMID: 30458225]
  37. Trends Plant Sci. 2015 Mar;20(3):176-85 [PMID: 25577424]
  38. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14204-9 [PMID: 18779566]
  39. Bioresour Technol. 2010 Dec;101(24):9715-22 [PMID: 20708926]
  40. FEBS Lett. 2013 Jun 19;587(12):1773-8 [PMID: 23660402]
  41. Int J Mol Sci. 2018 Nov 24;19(12): [PMID: 30477211]
  42. Plant J. 2017 Jan;89(2):181-194 [PMID: 27775193]

Word Cloud

Created with Highcharts 10.0.0biosynthesislicoriceDEGsstress[]constituentssaltanalysisgenesflavonoidflavonoidsbioactiveaccumulationNaCltranscriptomicidentifiedincludingtriterpenoidchalconeglycosidesSalinitysignificantlyaffectscontentselucidatemolecularmechanismunderlyingdifferencesodiumchlorideseedlingstreatedsubjectedintegratedmetaboliteprofilingresults3664differentiallyexpressedtranscriptionfactorfamilyMYBbasichelix-loop-helixinvolvedterpenoidpathwaysaddition121compoundsfiveclassesisoflavoneflavoneflavanoneisoflavanrelativelevelscomparedstressedcontrolgroupsusingdataultrafastliquidchromatographyUFLC-triplequadrupole-timeflight-tandemmassspectrometryTOF-MS/MSPutativenetworkstriterpenoidscreatedcombinedstructuralphenylalanineammonia-lyase4-coumarate-CoAligasecinnamate4-hydroxylasesynthasechalcone-flavanoneisomeraseflavonoid-3'5'hydroxylase''glycyrrhizinNotablysignificantupregulationUDP-glycosyltransferasesalt-stressedindicatedpostmodificationglycosyltransferasemayparticipatedownstreamsaponinsAccordinglyexpressiontrendpositivelycorrelatedstudyfindingsindicatekeycrucialco-regulatesaponinMetaboliteProfilingTranscriptomeAnalysisExplainsDifferenceAccumulationBioactiveConstituentsLicoriceSaltStressnetworktranscriptomics

Similar Articles

Cited By