Computational analysis of cardiac structure and function in congenital heart disease: Translating discoveries to clinical strategies.

Nickolas Forsch, Sachin Govil, James C Perry, Sanjeet Hegde, Alistair A Young, Jeffrey H Omens, Andrew D McCulloch
Author Information
  1. Nickolas Forsch: Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
  2. Sachin Govil: Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
  3. James C Perry: Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
  4. Sanjeet Hegde: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
  5. Alistair A Young: Department of Biomedical Engineering, King's College London, London, UK.
  6. Jeffrey H Omens: Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
  7. Andrew D McCulloch: Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.

Abstract

Increased availability and access to medical image data has enabled more quantitative approaches to clinical diagnosis, prognosis, and treatment planning for congenital heart disease. Here we present an overview of long-term clinical management of tetralogy of Fallot (TOF) and its intersection with novel computational and data science approaches to discovering biomarkers of functional and prognostic importance. Efforts in translational medicine that seek to address the clinical challenges associated with cardiovascular diseases using personalized and precision-based approaches are then discussed. The considerations and challenges of translational cardiovascular medicine are reviewed, and examples of digital platforms with collaborative, cloud-based, and scalable design are provided.

Keywords

References

  1. Ann Biomed Eng. 2017 Mar;45(3):525-541 [PMID: 27933407]
  2. J Am Med Inform Assoc. 2010 Mar-Apr;17(2):169-77 [PMID: 20190059]
  3. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;:11-22 [PMID: 16638542]
  4. Prog Pediatr Cardiol. 2016 Dec;43:61-69 [PMID: 28082823]
  5. J Cardiovasc Magn Reson. 2011 Jan 20;13:9 [PMID: 21251297]
  6. Heart. 2017 Apr;103(7):499-507 [PMID: 27694110]
  7. Circulation. 2013 Oct 22;128(17):1861-8 [PMID: 24065608]
  8. Clin Transl Sci. 2018 Jan;11(1):77-84 [PMID: 28887873]
  9. J Magn Reson Imaging. 1999 Nov;10(5):602-8 [PMID: 10548768]
  10. J Cardiovasc Magn Reson. 2018 Sep 14;20(1):65 [PMID: 30217194]
  11. Front Cardiovasc Med. 2020 Mar 05;7:25 [PMID: 32195270]
  12. J Vis Exp. 2018 Sep 20;(139): [PMID: 30295669]
  13. Eur Heart J. 2020 Dec 21;41(48):4556-4564 [PMID: 32128588]
  14. Heart. 2018 Jul;104(14):1156-1164 [PMID: 29352006]
  15. Circ Cardiovasc Imaging. 2010 Mar;3(2):164-71 [PMID: 20061518]
  16. JAMA Cardiol. 2019 Jan 1;4(1):34-41 [PMID: 30566184]
  17. BMC Med Res Methodol. 2019 Mar 19;19(1):64 [PMID: 30890124]
  18. Bioinformatics. 2011 Aug 15;27(16):2288-95 [PMID: 21737439]
  19. Int J Cardiovasc Imaging. 2017 May;33(5):711-720 [PMID: 28005218]
  20. Radiology. 2000 Aug;216(2):597-602 [PMID: 10924592]
  21. JAMA. 2006 Jan 4;295(1):90-3 [PMID: 16391221]
  22. Heart Rhythm. 2020 Mar;17(3):408-414 [PMID: 31589989]
  23. Circulation. 2014 Jan 7;129(1):18-27 [PMID: 24146254]
  24. JACC Cardiovasc Imaging. 2020 Mar;13(3):684-695 [PMID: 31326477]
  25. Sci Rep. 2019 Feb 4;9(1):1130 [PMID: 30718635]
  26. Cardiol Clin. 2002 Aug;20(3):395-404 [PMID: 12371008]
  27. J Cardiovasc Magn Reson. 2019 Jul 18;21(1):41 [PMID: 31315625]
  28. Clin Pharmacol Ther. 2017 May;101(5):585-586 [PMID: 28182259]
  29. J Am Med Inform Assoc. 2012 Mar-Apr;19(2):196-201 [PMID: 22081224]
  30. Magn Reson Med. 2017 Dec;78(6):2439-2448 [PMID: 28205298]
  31. Circ Cardiovasc Imaging. 2019 Oct;12(10):e009214 [PMID: 31547689]
  32. J Cardiovasc Magn Reson. 2014 Jul 30;16:56 [PMID: 25160814]
  33. J Cardiovasc Transl Res. 2018 Apr;11(2):123-132 [PMID: 29294215]
  34. Curr Opin Pediatr. 2015 Oct;27(5):587-96 [PMID: 26262579]
  35. IEEE Trans Med Imaging. 2011 Sep;30(9):1605-16 [PMID: 21880565]
  36. Am J Cardiol. 2014 Sep 15;114(6):901-8 [PMID: 25087464]
  37. Cardiovasc Ultrasound. 2018 Oct 29;16(1):28 [PMID: 30373624]
  38. Clin Trials. 2019 Apr;16(2):183-193 [PMID: 30628466]
  39. Eur Heart J Cardiovasc Imaging. 2013 Apr;14(4):381-6 [PMID: 23169758]

Grants

  1. R01 HL121754/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0clinicalmedicineapproachescongenitalhearttranslationalcardiovasculardatadiseasechallengescardiacIncreasedavailabilityaccessmedicalimageenabledquantitativediagnosisprognosistreatmentplanningpresentoverviewlong-termmanagementtetralogyFallotTOFintersectionnovelcomputationalsciencediscoveringbiomarkersfunctionalprognosticimportanceEffortsseekaddressassociateddiseasesusingpersonalizedprecision-baseddiscussedconsiderationsreviewedexamplesdigitalplatformscollaborativecloud-basedscalabledesignprovidedComputationalanalysisstructurefunctiondisease:Translatingdiscoveriesstrategiesmagneticresonancestatisticalshapeatlases

Similar Articles

Cited By (1)