Semiconductor quantum computation.

Xin Zhang, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, Guo-Ping Guo
Author Information
  1. Xin Zhang: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.
  2. Hai-Ou Li: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.
  3. Gang Cao: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.
  4. Ming Xiao: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.
  5. Guang-Can Guo: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.
  6. Guo-Ping Guo: Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China.

Abstract

Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing. Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single- and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.

Keywords

References

  1. Nat Commun. 2014 Oct 08;5:5156 [PMID: 25295674]
  2. Phys Rev Lett. 2002 Sep 30;89(14):147902 [PMID: 12366076]
  3. Phys Rev Lett. 2008 Jun 13;100(23):236802 [PMID: 18643533]
  4. Science. 2009 Jul 3;325(5936):70-2 [PMID: 19574387]
  5. Science. 2005 Sep 30;309(5744):2180-4 [PMID: 16141370]
  6. Nat Commun. 2017 Oct 18;8(1):1029 [PMID: 29044099]
  7. Nat Commun. 2017 Dec 15;8(1):1766 [PMID: 29242497]
  8. Sci Bull (Beijing). 2018 Aug 15;63(15):964-971 [PMID: 36658892]
  9. Phys Rev Lett. 2017 Jul 28;119(4):046802 [PMID: 29341777]
  10. Phys Rev Lett. 2012 Dec 21;109(25):250503 [PMID: 23368440]
  11. Nat Nanotechnol. 2014 Sep;9(9):666-70 [PMID: 25108810]
  12. Phys Rev Lett. 2009 Jul 31;103(5):056802 [PMID: 19792523]
  13. Science. 2017 Jan 13;355(6321):156-158 [PMID: 28008085]
  14. Nat Nanotechnol. 2014 Dec;9(12):981-5 [PMID: 25305743]
  15. Nat Nanotechnol. 2019 May;14(5):437-441 [PMID: 30858520]
  16. Nature. 2004 May 27;429(6990):389-92 [PMID: 15164056]
  17. Phys Rev Lett. 2019 May 24;122(20):206802 [PMID: 31172788]
  18. Nature. 2019 May;569(7757):532-536 [PMID: 31086337]
  19. Nat Nanotechnol. 2014 Dec;9(12):986-91 [PMID: 25305745]
  20. Nature. 2006 Aug 17;442(7104):766-71 [PMID: 16915280]
  21. Phys Rev Lett. 2009 Jul 3;103(1):016805 [PMID: 19659168]
  22. Nat Nanotechnol. 2013 Apr;8(4):261-5 [PMID: 23416792]
  23. Phys Rev Lett. 2012 Aug 3;109(5):050505 [PMID: 23006156]
  24. Science. 2018 Jan 26;359(6374):439-442 [PMID: 29217586]
  25. Science. 2011 Sep 2;333(6047):1269-72 [PMID: 21817015]
  26. Nature. 2010 Oct 7;467(7316):687-91 [PMID: 20877281]
  27. Nat Commun. 2018 May 30;9(1):2133 [PMID: 29849025]
  28. Nat Commun. 2013;4:1401 [PMID: 23360992]
  29. Rep Prog Phys. 2017 Oct;80(10):106001 [PMID: 28682303]
  30. Nat Nanotechnol. 2011 Dec 18;7(1):47-50 [PMID: 22179569]
  31. Sci Rep. 2013 Nov 11;3:3175 [PMID: 24213723]
  32. Nat Nanotechnol. 2017 Jan;12(1):16-20 [PMID: 27694847]
  33. Phys Rev Lett. 2009 Oct 16;103(16):160503 [PMID: 19905680]
  34. Phys Rev Lett. 2010 Dec 10;105(24):246804 [PMID: 21231547]
  35. Nat Commun. 2018 Sep 25;9(1):3902 [PMID: 30254225]
  36. Nat Nanotechnol. 2015 Mar;10(3):243-7 [PMID: 25686478]
  37. Nat Commun. 2018 Jul 19;9(1):2835 [PMID: 30026466]
  38. Science. 2018 Mar 9;359(6380):1123-1127 [PMID: 29371427]
  39. Sci Adv. 2018 Jul 06;4(7):eaar3960 [PMID: 29984303]
  40. Science. 2010 Feb 5;327(5966):669-72 [PMID: 20133567]
  41. Nature. 2014 Jul 3;511(7507):70-4 [PMID: 24990747]
  42. Nature. 2015 Oct 15;526(7573):410-4 [PMID: 26436453]
  43. Sci Adv. 2017 Oct 20;3(10):e1701699 [PMID: 29062893]
  44. Nat Commun. 2017 Sep 6;8(1):450 [PMID: 28878207]
  45. Nat Commun. 2015 Jul 17;6:7681 [PMID: 26184756]
  46. Nanotechnology. 2015 Sep 18;26(37):375202 [PMID: 26302871]
  47. Nature. 2004 Jul 22;430(6998):431-5 [PMID: 15269762]
  48. Science. 2013 Mar 8;339(6124):1169-74 [PMID: 23471399]
  49. Nature. 2018 Aug;560(7717):179-184 [PMID: 30046114]
  50. Nat Commun. 2019 Mar 5;10(1):1063 [PMID: 30837460]
  51. Phys Rev Lett. 2016 Feb 26;116(8):086801 [PMID: 26967435]
  52. Phys Rev Lett. 2011 Sep 30;107(14):146801 [PMID: 22107226]
  53. Nano Lett. 2007 Jul;7(7):2051-5 [PMID: 17567176]
  54. Phys Rev Lett. 2013 Aug 2;111(5):050502 [PMID: 23952376]
  55. Phys Rev Lett. 2010 Nov 19;105(21):216803 [PMID: 21231340]
  56. Nature. 2018 Mar 29;555(7698):633-637 [PMID: 29443962]
  57. Science. 2012 Apr 13;336(6078):202-5 [PMID: 22499942]
  58. Nat Nanotechnol. 2014 Dec;9(12):966-8 [PMID: 25305744]
  59. Phys Rev Lett. 2011 Jul 15;107(3):030506 [PMID: 21838342]
  60. Nat Nanotechnol. 2017 Jan;12(1):26-30 [PMID: 27723732]
  61. Phys Rev Lett. 2014 Jun 13;112(23):236801 [PMID: 24972221]
  62. Phys Rev Lett. 2018 May 18;120(20):207701 [PMID: 29864336]
  63. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8513-8 [PMID: 20404195]
  64. Nat Commun. 2014 May 14;5:3860 [PMID: 24828846]
  65. Nat Nanotechnol. 2013 Sep;8(9):654-9 [PMID: 23995458]
  66. Nano Lett. 2010 Aug 11;10(8):2789-93 [PMID: 20698590]
  67. Sci Adv. 2018 Jul 13;4(7):eaaq1459 [PMID: 30027114]
  68. Nat Commun. 2018 Nov 29;9(1):5066 [PMID: 30498231]
  69. Nat Commun. 2016 Nov 24;7:13575 [PMID: 27882926]
  70. Nano Lett. 2015 Oct 14;15(10):6620-5 [PMID: 26327140]
  71. Phys Rev Lett. 2017 Jul 7;119(1):017701 [PMID: 28731737]
  72. Nat Commun. 2019 Jul 8;10(1):3011 [PMID: 31285437]
  73. Nat Commun. 2018 May 2;9(1):1768 [PMID: 29720586]
  74. Phys Rev Lett. 2005 May 20;94(19):196802 [PMID: 16090196]
  75. Sci Adv. 2015 Oct 30;1(9):e1500707 [PMID: 26601310]
  76. Nature. 2000 Nov 16;408(6810):339-42 [PMID: 11099036]
  77. Nat Nanotechnol. 2018 Feb;13(2):102-106 [PMID: 29255292]
  78. Nature. 2012 Jan 18;481(7381):344-7 [PMID: 22258613]
  79. Nat Commun. 2018 Oct 30;9(1):4370 [PMID: 30375392]
  80. Science. 2013 Mar 8;339(6124):1174-9 [PMID: 23471400]
  81. Nature. 2010 Dec 23;468(7327):1084-7 [PMID: 21179164]
  82. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):11938-42 [PMID: 25092298]
  83. Nature. 2018 Mar 29;555(7698):599-603 [PMID: 29443961]
  84. Nat Commun. 2013;4:1400 [PMID: 23360991]
  85. Phys Rev Lett. 2013 Jul 26;111(4):046801 [PMID: 23931392]
  86. Phys Rev Lett. 2004 Oct 29;93(18):186802 [PMID: 15525191]
  87. Nature. 2017 Sep 13;549(7671):195-202 [PMID: 28905917]
  88. Nat Nanotechnol. 2013 Jun;8(6):432-7 [PMID: 23624695]
  89. Phys Rev Lett. 2012 Apr 6;108(14):140503 [PMID: 22540779]
  90. Phys Rev Lett. 2012 Jan 27;108(4):046807 [PMID: 22400878]
  91. Nano Lett. 2018 Mar 14;18(3):2091-2097 [PMID: 29468882]
  92. Nat Commun. 2015 Jan 20;6:6084 [PMID: 25600002]
  93. Nat Nanotechnol. 2019 Aug;14(8):737-741 [PMID: 31086305]
  94. Phys Rev Lett. 2016 Jun 17;116(24):246801 [PMID: 27367400]
  95. Nat Commun. 2018 Aug 14;9(1):3255 [PMID: 30108212]
  96. Science. 2013 Mar 8;339(6124):1164-9 [PMID: 23471398]
  97. Nature. 2012 Oct 18;490(7420):380-3 [PMID: 23075988]
  98. Nature. 2003 May 22;423(6938):422-5 [PMID: 12761544]
  99. Phys Rev Lett. 2017 Oct 27;119(17):176803 [PMID: 29219471]
  100. Nat Commun. 2013;4:2069 [PMID: 23804134]
  101. Phys Rev Lett. 2013 Aug 2;111(5):050501 [PMID: 23952375]
  102. Nat Commun. 2018 Mar 7;9(1):980 [PMID: 29515115]
  103. Phys Rev Lett. 2003 Nov 28;91(22):226804 [PMID: 14683264]
  104. Phys Rev Lett. 2008 Dec 5;101(23):230501 [PMID: 19113532]
  105. Phys Rev Lett. 2013 Jan 25;110(4):046805 [PMID: 25166190]
  106. Sci Adv. 2015 May 29;1(4):e1500214 [PMID: 26601186]

Word Cloud

Created with Highcharts 10.0.0quantumcomputationsemiconductorcontrolreadoutqubitmaterialinformationrecentfastresearchinitializationcomputingintroducediscusstwo-qubitSemiconductorssignificanttypeerabecomingpowerfulfielddecadesinvestigatedthoroughlyacrossworlddevelopeddramaticallyspeedvariedqubitsarchitecturefault-tolerantfirstbasicideasdevelopmentssingle-gatesemiconductorsnowcanrealizedrelativelyhighfidelityprogrammableprocessorevendemonstratedHoweverimprovequalityscalestillchallengesresolveimprovementmethoddevelopmentscalabledesignsissuesforefrontsprogressFinallyconsideringpositivetrenddevicestheoreticalworkapplicationsanticipatemaydevelopwillhugeimpactlivesnearfutureSemiconductordotspinmanipulation

Similar Articles

Cited By