A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage.

Shasha Zheng, Qing Li, Huaiguo Xue, Huan Pang, Qiang Xu
Author Information
  1. Shasha Zheng: School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China. ORCID
  2. Qing Li: School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China.
  3. Huaiguo Xue: School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China.
  4. Huan Pang: School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China.
  5. Qiang Xu: School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China.

Abstract

Most metal-organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, CoO nanocube@Co-MOF (CoO@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the CoO@Co-MOF composite shows a specific capacitance as high as 1020 F g at 0.5 A  g and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm.

Keywords

References

  1. J Am Chem Soc. 2015 Apr 22;137(15):4920-3 [PMID: 25864960]
  2. Chem Soc Rev. 2016 Oct 24;45(21):5925-5950 [PMID: 27545205]
  3. Angew Chem Int Ed Engl. 2016 Apr 18;55(17):5277-81 [PMID: 26990905]
  4. Adv Mater. 2012 Oct 2;24(38):5166-80 [PMID: 22912066]
  5. Chem Rev. 2012 Jul 11;112(7):4124-55 [PMID: 22452296]
  6. Angew Chem Int Ed Engl. 2018 Apr 3;57(15):3916-3921 [PMID: 29427470]
  7. Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12789-93 [PMID: 25244183]
  8. Adv Mater. 2016 Jul;28(26):5241 [PMID: 27383023]
  9. J Am Chem Soc. 2016 Jul 13;138(27):8336-9 [PMID: 27356078]
  10. Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2894-2898 [PMID: 29356328]
  11. Nat Commun. 2017 May 08;8:15194 [PMID: 28480885]
  12. Chem Soc Rev. 2014 Aug 21;43(16):5468-512 [PMID: 24638055]
  13. Chem Soc Rev. 2018 Apr 3;47(7):2322-2356 [PMID: 29498381]
  14. Chemistry. 2012 Mar 12;18(11):3163-8 [PMID: 22331705]
  15. J Am Chem Soc. 2013 Feb 6;135(5):1926-33 [PMID: 23339400]
  16. Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10889-93 [PMID: 26333054]
  17. Chem Soc Rev. 2017 Jun 6;46(11):3386-3401 [PMID: 28451673]
  18. Angew Chem Int Ed Engl. 2016 May 4;55(19):5733-8 [PMID: 27060363]
  19. J Am Chem Soc. 2005 Feb 9;127(5):1504-18 [PMID: 15686384]
  20. Nat Commun. 2018 Sep 27;9(1):3968 [PMID: 30262867]
  21. Nanoscale. 2014 Nov 6;6(23):14354-9 [PMID: 25329598]
  22. Chem Soc Rev. 2017 Jul 31;46(15):4774-4808 [PMID: 28621344]
  23. Science. 2018 Jan 12;359(6372):206-210 [PMID: 29326271]
  24. J Am Chem Soc. 2017 Feb 8;139(5):2035-2044 [PMID: 28103670]
  25. Adv Mater. 2019 Feb;31(6):e1804740 [PMID: 30548705]
  26. J Am Chem Soc. 2017 May 3;139(17):6034-6037 [PMID: 28388035]
  27. Nat Commun. 2013;4:1894 [PMID: 23695688]
  28. Adv Mater. 2017 Feb;29(7): [PMID: 27922736]
  29. Adv Mater. 2018 Mar;30(12):e1706640 [PMID: 29424076]
  30. ACS Nano. 2015 May 26;9(5):5310-7 [PMID: 25938705]
  31. ACS Nano. 2017 Jun 27;11(6):5800-5807 [PMID: 28514161]
  32. Angew Chem Int Ed Engl. 2019 Mar 18;58(12):4041-4045 [PMID: 30688394]
  33. Small. 2015 Sep;11(36):4666-72 [PMID: 26150383]
  34. Nat Mater. 2017 Feb;16(2):220-224 [PMID: 27723738]

Word Cloud

Created with Highcharts 10.0.0compositealkalineenergyelectrochemicalstoragehighlymetalstabilityalkaline-stableCoO@Co-MOFexceptionalstructure3highgflexibleframeworkmetal-organicframeworksMOFshardlymaintainphysicalchemicalpropertiesexposureaqueoussolutionsthusprecludingusepotentialelectrodematerialsdevicespresentdesignsynthesisoxide@MOFCoOnanocube@Co-MOFviacontrollablefacileone-pothydrothermalmethodconditionsobtainedpossessesretainingoriginal0 MKOHleast15 daysBenefittinguniquelargersurfaceareashowsspecificcapacitance1020 F g05 A cycling3%decay5000 cycles5as-constructedsolid-statedeviceexhibitsmaximumdensity216mWhcmoxide@metal-organichigh-performancesupercapacitoroxidemetal–organic

Similar Articles

Cited By