Cryo-EM reconstructions of inhibitor-bound SMG1 kinase reveal an autoinhibitory state dependent on SMG8.

Lukas M Langer, Fabien Bonneau, Yair Gat, Elena Conti
Author Information
  1. Lukas M Langer: Max Planck Institute of Biochemistry, Martinsried, Germany. ORCID
  2. Fabien Bonneau: Max Planck Institute of Biochemistry, Martinsried, Germany. ORCID
  3. Yair Gat: Max Planck Institute of Biochemistry, Martinsried, Germany. ORCID
  4. Elena Conti: Max Planck Institute of Biochemistry, Martinsried, Germany. ORCID

Abstract

The PI3K-related kinase (PIKK) SMG1 monitors the progression of metazoan nonsense-mediated mRNA decay (NMD) by phosphorylating the RNA helicase UPF1. Previous work has shown that the activity of SMG1 is impaired by small molecule inhibitors, is reduced by the SMG1 interactors SMG8 and SMG9, and is downregulated by the so-called SMG1 insertion domain. However, the molecular basis for this complex regulatory network has remained elusive. Here, we present cryo-electron microscopy reconstructions of human SMG1-9 and SMG1-8-9 complexes bound to either a SMG1 inhibitor or a non-hydrolyzable ATP analog at overall resolutions ranging from 2.8 to 3.6 Å. These structures reveal the basis with which a small molecule inhibitor preferentially targets SMG1 over other PIKKs. By comparison with our previously reported substrate-bound structure (Langer et al.,2020), we show that the SMG1 insertion domain can exert an autoinhibitory function by directly blocking the substrate-binding path as well as overall access to the SMG1 kinase active site. Together with biochemical analysis, our data indicate that SMG1 autoinhibition is stabilized by the presence of SMG8. Our results explain the specific inhibition of SMG1 by an ATP-competitive small molecule, provide insights into regulation of its kinase activity within the NMD pathway, and expand the understanding of PIKK regulatory mechanisms in general.

Keywords

References

  1. Methods. 2011 Sep;55(1):94-106 [PMID: 21821126]
  2. Mol Cell Biol. 2002 Nov;22(21):7428-38 [PMID: 12370290]
  3. Genes Dev. 2009 May 1;23(9):1091-105 [PMID: 19417104]
  4. Nucleic Acids Res. 2014 Aug;42(14):9447-60 [PMID: 25013172]
  5. Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877 [PMID: 31588918]
  6. Nat Protoc. 2018 Dec;13(12):2964-2990 [PMID: 30446747]
  7. Am J Hum Genet. 2016 Apr 7;98(4):643-52 [PMID: 27018474]
  8. Nat Rev Mol Cell Biol. 2019 Jul;20(7):406-420 [PMID: 30992545]
  9. Mol Cell. 2003 Nov;12(5):1187-200 [PMID: 14636577]
  10. J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]
  11. J Biol Chem. 2001 Jun 22;276(25):22709-14 [PMID: 11331269]
  12. Cold Spring Harb Perspect Biol. 2019 Feb 1;11(2): [PMID: 29891560]
  13. Nat Methods. 2017 Aug;14(8):793-796 [PMID: 28671674]
  14. Nature. 2013 May 9;497(7448):217-23 [PMID: 23636326]
  15. Bioorg Med Chem Lett. 2012 Nov 1;22(21):6636-41 [PMID: 23021994]
  16. Structure. 2014 Aug 5;22(8):1105-1119 [PMID: 25002321]
  17. Prog Biophys Mol Biol. 2021 Aug;163:120-129 [PMID: 33166573]
  18. Nucleic Acids Res. 2012 Feb;40(3):1251-66 [PMID: 21965535]
  19. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  20. Genes Cells. 2013 Mar;18(3):161-75 [PMID: 23356578]
  21. Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80 [PMID: 19770504]
  22. Mol Cell. 2021 Feb 18;81(4):801-810.e3 [PMID: 33385326]
  23. Nucleic Acids Res. 2014 Aug;42(14):9217-35 [PMID: 25053839]
  24. Anal Biochem. 2004 Mar 1;326(1):13-20 [PMID: 14769330]
  25. Am J Hum Genet. 2020 Dec 3;107(6):1178-1185 [PMID: 33242396]
  26. RNA. 2017 Jul;23(7):1028-1034 [PMID: 28389433]
  27. Structure. 2020 Jan 7;28(1):83-95.e5 [PMID: 31740028]
  28. Oncogene. 2004 Jul 22;23(33):5654-63 [PMID: 15133498]
  29. J Mol Biol. 2003 Oct 31;333(4):721-45 [PMID: 14568533]
  30. J Struct Biol. 2017 May;198(2):124-133 [PMID: 28344036]
  31. Genes Dev. 2011 Jan 15;25(2):153-64 [PMID: 21245168]
  32. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  33. Cell Res. 2019 Aug;29(8):683-685 [PMID: 31320732]
  34. Nat Struct Mol Biol. 2019 Dec;26(12):1089-1093 [PMID: 31792449]
  35. Genes Dev. 2001 Sep 1;15(17):2215-28 [PMID: 11544179]
  36. Mol Cell Proteomics. 2015 Jul;14(7):2030-41 [PMID: 25887394]
  37. Curr Opin Struct Biol. 2014 Dec;29:134-42 [PMID: 25460276]
  38. Cell Res. 2019 Dec;29(12):1027-1034 [PMID: 31729466]
  39. Genes Dev. 2006 Feb 1;20(3):355-67 [PMID: 16452507]
  40. Sci Adv. 2018 Jun 20;4(6):eaat1719 [PMID: 29938225]
  41. Nucleic Acids Res. 2015 Sep 3;43(15):7600-11 [PMID: 26130714]
  42. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  43. Drug Discov Today. 2011 Apr;16(7-8):325-31 [PMID: 21333749]
  44. Nat Rev Clin Oncol. 2018 May;15(5):273-291 [PMID: 29508857]
  45. Genes Dev. 2008 Jun 1;22(11):1478-89 [PMID: 18519640]
  46. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  47. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  48. Elife. 2018 Nov 09;7: [PMID: 30412051]
  49. Curr Opin Struct Biol. 2018 Apr;49:177-189 [PMID: 29625383]
  50. Structure. 2020 Jan 7;28(1):96-104.e3 [PMID: 31740029]
  51. Science. 1995 Oct 6;270(5233):50-1 [PMID: 7569949]
  52. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  53. Nucleic Acids Res. 2019 Sep 19;47(16):8838-8859 [PMID: 31329944]
  54. Elife. 2020 May 29;9: [PMID: 32469312]

MeSH Term

Cryoelectron Microscopy
HEK293 Cells
Humans
Intracellular Signaling Peptides and Proteins
Phosphorylation
Protein Serine-Threonine Kinases
RNA Helicases
Trans-Activators

Chemicals

Intracellular Signaling Peptides and Proteins
Trans-Activators
Protein Serine-Threonine Kinases
SMG1 protein, human
RNA Helicases

Word Cloud

Created with Highcharts 10.0.0SMG1kinasePIKKmRNAsmallmoleculeSMG8nonsense-mediateddecayNMDactivityinsertiondomainmolecularbasisregulatoryreconstructionshumaninhibitoroverallrevealautoinhibitoryPI3K-relatedmonitorsprogressionmetazoanphosphorylatingRNAhelicaseUPF1PreviousworkshownimpairedinhibitorsreducedinteractorsSMG9downregulatedso-calledHowevercomplexnetworkremainedelusivepresentcryo-electronmicroscopySMG1-9SMG1-8-9complexesboundeithernon-hydrolyzableATPanalogresolutionsranging2836ÅstructurespreferentiallytargetsPIKKscomparisonpreviouslyreportedsubstrate-boundstructureLangeretal2020showcanexertfunctiondirectlyblockingsubstrate-bindingpathwellaccessactivesiteTogetherbiochemicalanalysisdataindicateautoinhibitionstabilizedpresenceresultsexplainspecificinhibitionATP-competitiveprovideinsightsregulationwithinpathwayexpandunderstandingmechanismsgeneralCryo-EMinhibitor-boundstatedependentsurveillancebiophysicsstructuralbiology

Similar Articles

Cited By