Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase.

Simone Bach, Jana-Christin Demper, Paul Klemm, Julia Schlereth, Marcus Lechner, Andreas Schoen, Lennart Kämper, Friedemann Weber, Stephan Becker, Nadine Biedenkopf, Roland K Hartmann
Author Information
  1. Simone Bach: Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany. ORCID
  2. Jana-Christin Demper: Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany.
  3. Paul Klemm: Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany. ORCID
  4. Julia Schlereth: Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany.
  5. Marcus Lechner: Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany. ORCID
  6. Andreas Schoen: Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany. ORCID
  7. Lennart Kämper: Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany.
  8. Friedemann Weber: Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany. ORCID
  9. Stephan Becker: Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany.
  10. Nadine Biedenkopf: Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany.
  11. Roland K Hartmann: Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany. ORCID

Abstract

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.

References

  1. PLoS One. 2018 Aug 2;13(8):e0201827 [PMID: 30071116]
  2. J Clin Virol. 2015 Mar;64:111-9 [PMID: 25660265]
  3. Cell. 1983 Nov;35(1):175-85 [PMID: 6313223]
  4. J Virol. 1998 Nov;72(11):8756-64 [PMID: 9765419]
  5. PLoS One. 2008 Apr 30;3(4):e2032 [PMID: 18446221]
  6. J Virol. 2011 Jun;85(11):5406-14 [PMID: 21411529]
  7. J Mol Biol. 2019 Oct 4;431(21):4290-4320 [PMID: 31260690]
  8. Virology. 2016 Nov;498:94-98 [PMID: 27567257]
  9. PLoS One. 2014 Sep 26;9(9):e108770 [PMID: 25259935]
  10. J Virol. 1991 Oct;65(10):5342-7 [PMID: 1895388]
  11. mBio. 2010 Sep 14;1(4): [PMID: 20842206]
  12. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11525-30 [PMID: 20534471]
  13. J Virol. 2002 Aug;76(15):7632-41 [PMID: 12097577]
  14. J Virol. 2005 Aug;79(16):10660-71 [PMID: 16051858]
  15. mBio. 2014 Nov 04;5(6):e02011 [PMID: 25370495]
  16. Algorithms Mol Biol. 2011 Nov 24;6:26 [PMID: 22115189]
  17. RNA Biol. 2016 Sep;13(9):783-98 [PMID: 27315567]
  18. J Biol Chem. 2010 Jun 11;285(24):18208-16 [PMID: 20400512]
  19. Mol Genet Genomics. 2020 Nov;295(6):1501-1516 [PMID: 32767127]
  20. J Virol. 1999 Jan;73(1):444-52 [PMID: 9847350]
  21. Cell. 1979 Nov;18(3):735-47 [PMID: 229962]
  22. J Gen Virol. 1999 Feb;80 ( Pt 2):355-362 [PMID: 10073695]
  23. J Virol. 1999 Jan;73(1):805-9 [PMID: 9847393]
  24. J Gen Virol. 2003 May;84(Pt 5):1207-1214 [PMID: 12692286]
  25. J Virol. 1998 Apr;72(4):3117-28 [PMID: 9525637]
  26. Immunity. 2009 Jul 17;31(1):25-34 [PMID: 19576794]
  27. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5952-7 [PMID: 15069200]
  28. J Virol. 2006 Jul;80(14):7260-4 [PMID: 16809331]
  29. Methods Mol Biol. 2017;1628:119-131 [PMID: 28573615]
  30. J Gen Virol. 2005 Jan;86(Pt 1):171-180 [PMID: 15604444]
  31. FEMS Microbiol Rev. 2016 Jul;40(4):494-519 [PMID: 27268907]
  32. J Virol. 2008 Aug;82(16):7977-87 [PMID: 18550659]
  33. Virology. 2010 Jul 20;403(1):56-66 [PMID: 20444481]
  34. Nature. 2018 Nov;563(7729):137-140 [PMID: 30333622]
  35. Cell Host Microbe. 2013 Mar 13;13(3):336-46 [PMID: 23498958]
  36. Future Virol. 2007 Mar;2(2):205-215 [PMID: 24093048]
  37. Curr Top Microbiol Immunol. 2004;283:61-119 [PMID: 15298168]
  38. J Virol. 2020 Dec 2;: [PMID: 33268520]
  39. J Gen Virol. 2006 Jul;87(Pt 7):1805-1821 [PMID: 16760383]
  40. Virology. 1985 Sep;145(2):203-12 [PMID: 4024452]
  41. Nat Commun. 2017 Jun 08;8:15576 [PMID: 28593988]
  42. J Biol Chem. 2013 Apr 19;288(16):11165-74 [PMID: 23493393]
  43. J Virol. 1989 May;63(5):1951-8 [PMID: 2539496]
  44. J Virol. 1999 Mar;73(3):2333-42 [PMID: 9971816]
  45. Nature. 2017 Nov 16;551(7680):394-397 [PMID: 29144446]
  46. EMBO J. 2002 Oct 1;21(19):5141-50 [PMID: 12356730]
  47. Virus Res. 1993 Sep;29(3):215-40 [PMID: 8237108]
  48. Mol Cell. 2018 Jan 4;69(1):136-145.e6 [PMID: 29290611]
  49. Virology. 2010 Oct 25;406(2):241-52 [PMID: 20701943]
  50. Nucleic Acids Res. 2019 Jun 20;47(11):5837-5851 [PMID: 31066445]
  51. J Virol. 2013 Mar;87(6):3196-207 [PMID: 23283954]
  52. J Gen Virol. 2006 Mar;87(Pt 3):665-672 [PMID: 16476989]
  53. Virology. 2015 May;479-480:545-54 [PMID: 25683441]
  54. J Virol. 2018 Sep 26;92(20): [PMID: 30045993]
  55. Nucleic Acids Res. 2016 Nov 16;44(20):9831-9846 [PMID: 27651462]
  56. Virology. 1999 Sep 15;262(1):114-28 [PMID: 10489346]
  57. Virology. 1997 Mar 3;229(1):57-67 [PMID: 9123878]
  58. PLoS One. 2007 Mar 14;2(3):e279 [PMID: 17356690]
  59. J Virol. 2002 Sep;76(17):8532-9 [PMID: 12163572]
  60. RNA. 2019 Mar;25(3):279-285 [PMID: 30587495]
  61. Virology. 2000 Mar 30;269(1):201-11 [PMID: 10725212]
  62. J Virol. 1992 Mar;66(3):1370-6 [PMID: 1738196]
  63. J Virol. 2015 Dec 09;90(4):1898-909 [PMID: 26656691]
  64. J Gen Virol. 2007 May;88(Pt 5):1555-1564 [PMID: 17412986]
  65. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8535-8543 [PMID: 30962389]
  66. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9178-83 [PMID: 12089339]
  67. RNA Biol. 2021 Apr;18(4):523-536 [PMID: 32882148]
  68. J Virol. 2016 Apr 29;90(10):4914-4925 [PMID: 26937028]
  69. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15208-13 [PMID: 25288750]
  70. RNA. 2016 Apr;22(4):614-22 [PMID: 26873600]
  71. Virology. 2017 Oct;510:104-110 [PMID: 28715652]
  72. RNA. 2020 Apr;26(4):439-453 [PMID: 31924730]
  73. PLoS Pathog. 2016 Feb 10;12(2):e1005444 [PMID: 26862753]
  74. J Virol. 1993 Aug;67(8):4822-30 [PMID: 8392616]
  75. Front Microbiol. 2019 Jul 10;10:1490 [PMID: 31354644]
  76. Virus Res. 2017 Apr 15;234:87-102 [PMID: 28104450]
  77. J Virol. 1997 Feb;71(2):1466-75 [PMID: 8995672]
  78. J Virol. 1999 Jan;73(1):297-306 [PMID: 9847333]
  79. Virus Res. 1996 Mar;41(1):69-76 [PMID: 8725103]
  80. J Virol. 2016 Jul 27;90(16):7481-7496 [PMID: 27279615]

MeSH Term

DNA-Directed RNA Polymerases
Ebolavirus
RNA, Viral
Transcription, Genetic

Chemicals

RNA, Viral
DNA-Directed RNA Polymerases

Word Cloud

Created with Highcharts 10.0.0transcriptionsynthesisleaderRNAspromoterRNA3'-endabortiveinitiationRNAsnt23'-leadervirusEBOVreplicationNNSvirusesinitiatedshortleaderlinkedtrailergenomeLeaderRNAratioEbolaterminationsitespresenceVP30leaderRNAgenedifferentnucleotidepolymeraseTranscriptionnon-segmentednegativesensefollowsstop-startmechanismthoughtgenome'stranscriptsidentifiedwellspecificallyoppositeantipredominantlyterminatedregion~60-80requireshexamerphasingdeterminedsteady-stateNPmRNA:leaderRNA~1030-fold48hinfectionhigher70190-foldminigenome-transfectedcellsrangeaffectedstructurelengthvariationelements1absenceSynthesissuppressedmediatedcrypticendGEsignalsfoundgenomicrequirementsversussuggestingrecognitionmodeprovideevidencearguingpotentialroleeffectormoleculesinnateimmunityTakentogetherfindingsconsistentmodelaccordingreplicativewhoseRathercomplexesproposedindependentlyinitiateseparateiesecondinternallypositionedstartsiteprecedingfirstrespectivelyreportedVesicularstomatitisIdentificationcharacterizationsynthesized

Similar Articles

Cited By