Martingales and the characteristic functions of absorption time on bipartite graphs.

Travis Monk, André van Schaik
Author Information
  1. Travis Monk: International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia. ORCID
  2. André van Schaik: International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia.

Abstract

Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald's martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.

Keywords

References

  1. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  2. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  3. Epidemics. 2015 Mar;10:54-7 [PMID: 25843384]
  4. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  5. Phys Rev E. 2019 Jul;100(1-1):012408 [PMID: 31499887]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042154 [PMID: 26565215]
  7. PLoS Comput Biol. 2020 Nov 5;16(11):e1008402 [PMID: 33151935]
  8. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  9. Elife. 2017 Dec 21;6: [PMID: 29266000]
  10. Biosystems. 2015 Mar;129:25-35 [PMID: 25625871]
  11. R Soc Open Sci. 2021 Mar 17;8(3):201831 [PMID: 33959343]
  12. R Soc Open Sci. 2015 Apr 29;2(4):140465 [PMID: 26064637]
  13. J Math Biol. 2020 Jul;81(1):277-314 [PMID: 32476038]
  14. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  15. Biol Bull. 2001 Dec;201(3):323-38 [PMID: 11751245]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  17. PLoS One. 2013;8(1):e54639 [PMID: 23382931]
  18. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  19. Proc Biol Sci. 2006 Sep 7;273(1598):2249-56 [PMID: 16901846]
  20. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  21. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142521]
  22. J Math Biol. 2015 Dec;71(6-7):1299-324 [PMID: 25697835]
  23. Phys Rev E. 2017 Feb;95(2-1):022407 [PMID: 28297871]
  24. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5766-71 [PMID: 16578874]
  25. Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200731 [PMID: 33216835]
  26. J Theor Biol. 2014 May 21;349:66-73 [PMID: 24462897]
  27. Nat Commun. 2019 Nov 8;10(1):5107 [PMID: 31704922]
  28. Biosystems. 2013 Apr;112(1):49-54 [PMID: 23567507]
  29. Syst Biol. 2015 Jan;64(1):e1-25 [PMID: 25293804]
  30. Math Biosci. 2007 Sep;209(1):124-70 [PMID: 17320915]
  31. PLoS Comput Biol. 2019 Aug 5;15(8):e1007238 [PMID: 31381556]
  32. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  33. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042707 [PMID: 26565272]

Word Cloud

Created with Highcharts 10.0.0processtimegraphMoranconditionalgraphsevolutionaryfixationdistributionsshowabsorptionCCFsbipartitetheoryspatialconstraintsmodelprincipalconsiderproxycharacteristicfunctionscompletetwoextendanalysisMartingalesEvolutionaryinvestigatesaffectprocessesselectioneggoalsfindprobabilityaffecteddifferentimposeFixationprobabilitiesgeneratedsignificantattentionmuchlessknownevensimpledifficultcalculatecloseit:numbertimesmutantpopulationsizechangesemploymartingalesobtainabsorbingrandomwalkdimensionsWald'smartingaleapproachsequentialonedimensionexpressionsnovelcompactexactparameterdependenceexplicitcloselyapproximateprovideelegantframeworksolveproblemspossiblecomplexherebirth–deathstochastic

Similar Articles

Cited By