Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques.

Jingyou Yu, Natalie D Collins, Noe B Mercado, Katherine McMahan, Abishek Chandrashekar, Jinyan Liu, Tochi Anioke, Aiquan Chang, Victoria M Giffin, David L Hope, Daniel Sellers, Felix Nampanya, Sarah Gardner, Julia Barrett, Huahua Wan, Jason Velasco, Elyse Teow, Anthony Cook, Alex Van Ry, Laurent Pessaint, Hanne Andersen, Mark G Lewis, Christian Hofer, Donald S Burke, Erica K Barkei, Hannah A D King, Caroline Subra, Diane Bolton, Kayvon Modjarrad, Nelson L Michael, Dan H Barouch
Author Information
  1. Jingyou Yu: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  2. Natalie D Collins: Walter Reed National Military Medical Center, Bethesda, Maryland, USA.
  3. Noe B Mercado: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA. ORCID
  4. Katherine McMahan: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  5. Abishek Chandrashekar: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  6. Jinyan Liu: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  7. Tochi Anioke: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  8. Aiquan Chang: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  9. Victoria M Giffin: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  10. David L Hope: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  11. Daniel Sellers: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  12. Felix Nampanya: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  13. Sarah Gardner: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  14. Julia Barrett: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  15. Huahua Wan: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA.
  16. Jason Velasco: Bioqual, Rockville, Maryland, USA.
  17. Elyse Teow: Bioqual, Rockville, Maryland, USA.
  18. Anthony Cook: Bioqual, Rockville, Maryland, USA.
  19. Alex Van Ry: Bioqual, Rockville, Maryland, USA.
  20. Laurent Pessaint: Bioqual, Rockville, Maryland, USA.
  21. Hanne Andersen: Bioqual, Rockville, Maryland, USA.
  22. Mark G Lewis: Bioqual, Rockville, Maryland, USA.
  23. Christian Hofer: Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA.
  24. Donald S Burke: Graduate School of Public Health, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA.
  25. Erica K Barkei: Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA.
  26. Hannah A D King: Henry Jackson Foundation, Bethesda, Maryland, USA.
  27. Caroline Subra: Henry Jackson Foundation, Bethesda, Maryland, USA.
  28. Diane Bolton: Henry Jackson Foundation, Bethesda, Maryland, USA.
  29. Kayvon Modjarrad: Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA.
  30. Nelson L Michael: Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA.
  31. Dan H Barouch: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Centergrid.239395.7, Harvard Medical School, Boston, Massachusetts, USA. ORCID

Abstract

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.

Keywords

References

  1. Nat Rev Gastroenterol Hepatol. 2021 Apr;18(4):269-283 [PMID: 33589829]
  2. Nat Med. 2005 Apr;11(4 Suppl):S45-53 [PMID: 15812489]
  3. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  4. Lancet. 2006 Jul 22;368(9532):323-32 [PMID: 16860702]
  5. Vaccine. 2013 Jul 11;31(32):3236-43 [PMID: 23707160]
  6. Gut. 2020 Jun;69(6):1143-1144 [PMID: 32139552]
  7. Cell Host Microbe. 2020 Sep 9;28(3):364-370 [PMID: 32798444]
  8. Cell Rep Med. 2020 Oct 20;1(7):100121 [PMID: 32984855]
  9. Gastroenterology. 2020 May;158(6):1831-1833.e3 [PMID: 32142773]
  10. J Clin Diagn Res. 2014 Jul;8(7):ZC56-60 [PMID: 25177640]
  11. Gastroenterology. 2021 Apr;160(5):1647-1661 [PMID: 33307034]
  12. Mil Med. 1995 Jun;160(6):300-4 [PMID: 7659229]
  13. Sci Immunol. 2020 May 13;5(47): [PMID: 32404436]
  14. Nat Rev Immunol. 2006 Feb;6(2):148-58 [PMID: 16491139]
  15. Vaccine. 2016 Aug 31;34(38):4558-4564 [PMID: 27475474]
  16. J Infect Dis. 1971 Aug;124(2):148-54 [PMID: 4330997]
  17. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  18. Vaccine. 2013 Jun 19;31(28):2963-71 [PMID: 23623865]
  19. Adv Drug Deliv Rev. 2017 May 15;114:116-131 [PMID: 28438674]
  20. Future Microbiol. 2015;10(5):791-808 [PMID: 25824845]
  21. Vaccine. 2008 Jun 2;26(23):2890-8 [PMID: 18448211]
  22. Science. 2020 May 29;368(6494):948-950 [PMID: 32393526]
  23. Nature. 2020 Oct;586(7830):583-588 [PMID: 32731257]
  24. Am J Epidemiol. 1971 Aug;94(2):142-6 [PMID: 4327997]
  25. Science. 2020 Aug 14;369(6505):806-811 [PMID: 32434945]
  26. Science. 2020 Aug 14;369(6505):812-817 [PMID: 32434946]
  27. Am J Public Health Nations Health. 1957 Jul;47(7):841-7 [PMID: 13435388]
  28. Vaccine. 2019 Nov 28;37(50):7328-7335 [PMID: 28396207]
  29. Curr Opin Biotechnol. 2007 Dec;18(6):546-56 [PMID: 18063357]
  30. J Virol. 2021 Jan 20;: [PMID: 33472939]
  31. Nat Rev Immunol. 2014 Oct;14(10):667-85 [PMID: 25234148]
  32. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  33. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  34. Vaccines (Basel). 2020 Jul 23;8(3): [PMID: 32718082]
  35. J Virol. 2021 Mar 16;: [PMID: 33727331]

MeSH Term

Administration, Oral
Animals
Antibodies, Neutralizing
Antibodies, Viral
COVID-19
COVID-19 Vaccines
Female
Macaca mulatta
Male
Vaccine Efficacy

Chemicals

Antibodies, Neutralizing
Antibodies, Viral
COVID-19 Vaccines

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2oralliveprotectiveefficacyvaccinevaccinesrespiratoryimmunogenicitychallengeadministrationswabsLivepotentialhoweverremainsgastrointestinaltractrhesusmacaquesintranasalintratracheallimitednasalbronchoalveolarlavagefluidcoveragemayofferbenefitsexploredvirusesparticularlyadenovirusserotypes47severeacutesyndromecoronavirus2unclearstudyassesseddeliveredPostpyloricesophagogastroduodenoscopyresultedvirusreplicationminimalinductionmucosalantibodytitersrectalLowlevelsserumneutralizingantibodiesinducedcorrelatedmodestlydiminishedviralloadsfollowingOveralldatashowpostpyloricinoculationweaklyimmunogenicconferspartialprotectionglobalthreatdespiterapiddeploymentmultipleAlternativestrategiesfavorablemanufacturingtimelinesgreatereasedistributionimprovedsignificantpublichealthespeciallyresource-limitedsettingsaddresslimitationsstudiesyetconductedassessreportnonhumanprimatesprophylacticformulationroutewillrequireoptimizationProtectiveEfficacyGastrointestinalDeliveryIntranasalIntratrachealChallengeRhesusMacaquesCOVID-19

Similar Articles

Cited By