Ubiquitination on Lysine 247 of Newcastle Disease Virus Matrix Protein Enhances Viral Replication and Virulence by Driving Nuclear-Cytoplasmic Trafficking.

Tingyu Peng, Xusheng Qiu, Lei Tan, Shengqing Yu, Binghuan Yang, Jun Dai, Xiaowen Liu, Yingjie Sun, Cuiping Song, Weiwei Liu, Chunchun Meng, Ying Liao, Weifeng Yuan, Tao Ren, Xiufan Liu, Chan Ding
Author Information
  1. Tingyu Peng: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  2. Xusheng Qiu: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. ORCID
  3. Lei Tan: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  4. Shengqing Yu: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. ORCID
  5. Binghuan Yang: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  6. Jun Dai: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  7. Xiaowen Liu: Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.
  8. Yingjie Sun: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. ORCID
  9. Cuiping Song: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  10. Weiwei Liu: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  11. Chunchun Meng: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  12. Ying Liao: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
  13. Weifeng Yuan: Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
  14. Tao Ren: College of Veterinary Medicine, South China Agricultural University, Guangzhou People's Republic of China.
  15. Xiufan Liu: Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.
  16. Chan Ding: Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. ORCID

Abstract

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding, and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M protein nuclear-cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were analyzed. Here, two types of combined NLSs and NESs were identified within the NDV-M protein. The Herts/33-type M protein was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M protein was retained mostly in the nuclei and showed retarded VLP production. Two critical residues, namely, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, of which its modification regulates the nuclear-cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued LaSota (rLaSota) strains rLaSota-R247K, -S263R, and -double mutation (DM) showed about 2-fold higher hemagglutination (HA) titers and 10-fold higher 50% egg infective dose (EID) titers than wild-type (wt) rLaSota. Furthermore, the mean death time (MDT) and intracerebral pathogenicity index (ICPI) values of those recombinant viruses were slightly higher than those of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV and even those of all other paramyxoviruses. This information is beneficial for the development of vaccines and therapies for paramyxoviruses. Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked Newcastle disease (ND) as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and open up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach for improving paramyxovirus vaccines.

Keywords

References

  1. Viruses. 2014 Aug 07;6(8):3019-54 [PMID: 25105277]
  2. Annu Rev Cell Dev Biol. 1999;15:607-60 [PMID: 10611974]
  3. Dev Comp Immunol. 2020 May;106:103631 [PMID: 31991164]
  4. J Virol. 2001 Dec;75(23):11384-91 [PMID: 11689619]
  5. PLoS Pathog. 2010 Nov 11;6(11):e1001186 [PMID: 21085610]
  6. J Virol. 2017 Jan 18;91(3): [PMID: 27852860]
  7. PLoS One. 2015 Apr 27;10(4):e0125619 [PMID: 25915798]
  8. Arch Virol. 2013 Dec;158(12):2589-95 [PMID: 23807745]
  9. J Virol. 2008 Sep;82(18):9303 [PMID: 18755681]
  10. J Virol. 1992 May;66(5):3263-9 [PMID: 1560547]
  11. J Virol Methods. 2018 Oct;260:88-97 [PMID: 30026051]
  12. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13996-4000 [PMID: 22891297]
  13. J Virol. 2006 Nov;80(22):11062-73 [PMID: 16971425]
  14. Virology. 1993 Aug;195(2):596-607 [PMID: 8337834]
  15. J Mol Biol. 1996 May 24;258(5):763-77 [PMID: 8637008]
  16. Vet Res. 2019 Mar 20;50(1):22 [PMID: 30894203]
  17. Infect Genet Evol. 2019 Oct;74:103917 [PMID: 31200111]
  18. Arch Virol. 2018 Aug;163(8):2283-2294 [PMID: 29637429]
  19. Avian Pathol. 2001 Oct;30(5):439-55 [PMID: 19184932]
  20. Cell. 2007 Jan 12;128(1):141-56 [PMID: 17218261]
  21. J Virol. 1988 Feb;62(2):586-93 [PMID: 3275790]
  22. J Virol. 2019 Aug 28;93(18): [PMID: 31270229]
  23. Viral Immunol. 2021 Jan-Feb;34(1):27-40 [PMID: 33021467]
  24. J Gen Virol. 2003 Oct;84(Pt 10):2691-2703 [PMID: 13679603]
  25. Science. 2003 Dec 12;302(5652):1972-5 [PMID: 14671306]
  26. Rev Sci Tech. 2000 Aug;19(2):443-62 [PMID: 10935273]
  27. Virus Res. 2006 Sep;120(1-2):36-48 [PMID: 16766077]
  28. Drug Discov Today. 2020 Oct;25(10):1775-1781 [PMID: 32569833]
  29. J Gen Virol. 1999 Nov;80 ( Pt 11):2987-2995 [PMID: 10580061]
  30. J Virol. 1999 Jun;73(6):5001-9 [PMID: 10233962]
  31. Nucleic Acids Res. 2018 Jan 4;46(D1):D503-D508 [PMID: 29106588]
  32. J Virol. 2020 Dec 9;95(1): [PMID: 33028721]
  33. Curr Protoc Microbiol. 2018 Feb 22;48:18.5.1-18.5.12 [PMID: 29512119]
  34. Infect Genet Evol. 2016 Apr;39:22-34 [PMID: 26792710]
  35. PLoS One. 2016 Aug 23;11(8):e0161360 [PMID: 27551716]
  36. Hum Biol. 1950 Sep;22(3):151-90 [PMID: 14778593]
  37. ScientificWorldJournal. 2014;2014:934851 [PMID: 25379553]
  38. Front Microbiol. 2017 Jun 28;8:1171 [PMID: 28702009]
  39. Avian Pathol. 2001 Apr;30(2):117-28 [PMID: 19184885]
  40. Cell. 2003 Nov 26;115(5):565-76 [PMID: 14651848]
  41. Exp Cell Res. 2000 Apr 10;256(1):213-24 [PMID: 10739668]
  42. J Virol. 2014 Aug;88(15):8579-96 [PMID: 24850737]
  43. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8894-6 [PMID: 27482112]
  44. Nat Commun. 2018 Apr 30;9(1):1736 [PMID: 29712906]
  45. Virol J. 2011 Mar 14;8:117 [PMID: 21396134]
  46. Arch Virol. 2003 Jul;148(7):1419-29 [PMID: 12827470]
  47. Avian Pathol. 1988;17(4):893-907 [PMID: 18766750]
  48. J Virol. 2019 Mar 5;93(6): [PMID: 30567981]
  49. J Virol. 2009 Jun;83(11):5353-62 [PMID: 19297465]
  50. Biochim Biophys Acta. 2011 Sep;1813(9):1578-92 [PMID: 21029753]
  51. J Virol. 2014 Nov;88(22):13173-88 [PMID: 25187547]
  52. PLoS Pathog. 2015 Mar 17;11(3):e1004739 [PMID: 25782006]
  53. J Virol. 2011 Oct;85(19):10409-14 [PMID: 21775447]
  54. Hospital (Lond 1886). 1908 Oct 24;45(1157):93-94 [PMID: 29815897]
  55. J Virol Methods. 2011 Sep;176(1-2):108-11 [PMID: 21645548]
  56. Virus Res. 2007 Nov;129(2):182-90 [PMID: 17719672]
  57. J Virol. 2018 Jun 13;92(13): [PMID: 29695428]
  58. Curr Issues Mol Biol. 2020;35:99-108 [PMID: 31422935]
  59. Virulence. 2018 Dec 31;9(1):783-803 [PMID: 29532715]
  60. Microb Pathog. 2017 Jun;107:81-87 [PMID: 28330747]
  61. Virulence. 2020 Dec;11(1):607-635 [PMID: 32420802]
  62. J Virol. 2019 Jun 28;93(14): [PMID: 31043528]

MeSH Term

Animals
Cell Nucleus
Chickens
Cytoplasm
Lysine
Models, Molecular
Mutation
Newcastle Disease
Newcastle disease virus
Nuclear Export Signals
Nuclear Localization Signals
Ubiquitination
Viral Matrix Proteins
Virulence
Virus Release
Virus Replication

Chemicals

Nuclear Export Signals
Nuclear Localization Signals
Viral Matrix Proteins
Lysine

Word Cloud

Created with Highcharts 10.0.0MproteinnucleardiseaseNewcastleNDVexportvirusviralsignalhighermatrixidentifiedwithinNDV-M247importantrLaSotareplicationparamyxovirusesassemblyproliferationcellularnucleusprimaryfunctioncytoplasmnuclear-cytoplasmictraffickingmechanismmotifcombinedfoundefficientVLPshowedproductioncriticaltimeresiduemodificationLaSotastrainsrescuedtiterswtpathogenicityfindingsvaccinespoultryWorldDiseasenewpivotalelementbuddingtrafficsperformsinvestigatebiologicalimportanceinvolvedregulatoryNESlocalizationNLSanalyzedtwotypesNLSsNESsHerts/33-typemediatestablevirus-likeparticlereleaseLaSota-typeretainedmostlynucleiretardedTworesiduesnamely263associatedefficiencyfirstmonoubiquitinationsiteregulatesSubsequentlymutantviareversegeneticscontainedeithersingledoubleaminoacidsubstitutionssimilarHerts/33rLaSota-R247K-S263R-doublemutationDM2-foldhemagglutinationHA10-fold50%egginfectivedoseEIDwild-typeFurthermoremeandeathMDTintracerebralindexICPIvaluesrecombinantvirusesslightlyprobablydueratescontributebetterunderstandingmoleculareveninformationbeneficialdevelopmenttherapiespathogenlethalbirdscausesheavylossesindustryworldwideOrganizationAnimalHealthOIErankedNDthirdsignificanteighthwildlifeLivestockAtlas2011maturationinterestingproteinsenterperformingimportubiquitinlysinequicksubsequentshedlightopenpossibilitiestherapeuticsfurthermoredemonstratenovelapproachimprovingparamyxovirusUbiquitinationLysineVirusMatrixProteinEnhancesViralReplicationVirulenceDrivingNuclear-CytoplasmicTraffickingshuttleubiquitination

Similar Articles

Cited By