Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion.

Reinier J de Vries, Stephanie E J Cronin, Padraic Romfh, Casie A Pendexter, Rohil Jain, Benjamin T Wilks, Siavash Raigani, Thomas M van Gulik, Peili Chen, Heidi Yeh, Korkut Uygun, Shannon N Tessier
Author Information
  1. Reinier J de Vries: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America.
  2. Stephanie E J Cronin: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America.
  3. Padraic Romfh: Pendar Technologies, Cambridge, MA, United States of America.
  4. Casie A Pendexter: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America. ORCID
  5. Rohil Jain: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America.
  6. Benjamin T Wilks: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America. ORCID
  7. Siavash Raigani: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America. ORCID
  8. Thomas M van Gulik: Department of Surgery, Amsterdam University Medical Centers-Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
  9. Peili Chen: Pendar Technologies, Cambridge, MA, United States of America.
  10. Heidi Yeh: Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America.
  11. Korkut Uygun: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America.
  12. Shannon N Tessier: Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America. ORCID

Abstract

Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.

References

  1. Am J Transplant. 2019 Feb;19 Suppl 2:184-283 [PMID: 30811890]
  2. Hepatology. 2011 May;53(5):1662-75 [PMID: 21360570]
  3. Curr Opin Biotechnol. 2019 Aug;58:192-201 [PMID: 31280087]
  4. Gastroenterology. 2019 Nov;157(5):1368-1382 [PMID: 31336123]
  5. Proc R Soc Lond B Biol Sci. 1962 Nov 20;156:429-58 [PMID: 14040866]
  6. Sci Rep. 2015 Sep 08;5:13793 [PMID: 26346634]
  7. J Anal Methods Chem. 2013;2013:351671 [PMID: 24324916]
  8. Nat Med. 2011 Nov 07;17(11):1391-401 [PMID: 22064429]
  9. Sci Rep. 2020 Jan 24;10(1):1102 [PMID: 31980677]
  10. Nature. 1990 Nov 1;348(6296):16-7 [PMID: 2172832]
  11. Curr Opin Organ Transplant. 2017 Jun;22(3):281-286 [PMID: 28266941]
  12. World J Gastrointest Surg. 2014 Jul 27;6(7):122-8 [PMID: 25068009]
  13. PLoS One. 2019 Dec 2;14(12):e0225222 [PMID: 31790444]
  14. J Biomed Opt. 2014 May;19(5):055001 [PMID: 24788369]
  15. Science. 1977 Dec 23;198(4323):1264-7 [PMID: 929199]
  16. Nat Biotechnol. 2019 Oct;37(10):1131-1136 [PMID: 31501557]
  17. Hepatology. 2002 Dec;36(6):1543-52 [PMID: 12447882]
  18. Int J Med Sci. 2018 Jan 8;15(3):248-256 [PMID: 29483816]
  19. Liver Int. 2019 May;39(5):788-801 [PMID: 30843314]
  20. HPB (Oxford). 2019 Sep;21(9):1156-1165 [PMID: 30777695]
  21. J Clin Exp Hepatol. 2017 Dec;7(4):358-366 [PMID: 29234201]
  22. Eur Surg Res. 1989;21(2):76-82 [PMID: 2670579]
  23. Sci Rep. 2016 Mar 03;6:22415 [PMID: 26935866]
  24. Cytokine Growth Factor Rev. 2012 Jun;23(3):69-84 [PMID: 22609105]
  25. Nature. 1961 Jul 8;191:144-8 [PMID: 13771349]
  26. Free Radic Biol Med. 2008 Feb 15;44(4):646-56 [PMID: 18053818]
  27. Ann Surg. 2019 Nov;270(5):906-914 [PMID: 31633615]
  28. Kidney Int. 2004 Aug;66(2):514-7 [PMID: 15253700]
  29. Clin Transplant. 2021 Mar;35(3):e14211 [PMID: 33368701]
  30. J Hepatobiliary Pancreat Surg. 1999;6(2):171-5 [PMID: 10398905]
  31. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):583 [PMID: 31388145]
  32. Mutat Res. 2012 Aug 15;746(2):104-12 [PMID: 22230429]
  33. Sci Transl Med. 2017 Sep 20;9(408): [PMID: 28931652]
  34. Am J Physiol. 1999 Aug;277(2):H683-97 [PMID: 10444495]
  35. Transplantation. 2017 Jul;101(7):1637-1644 [PMID: 28230641]
  36. Biochem J. 1967 May;103(2):514-27 [PMID: 4291787]
  37. Int J Surg. 2016 Sep;33 Suppl 1:S57-70 [PMID: 27255130]
  38. Technology (Singap World Sci). 2014 Mar;2(1):13 [PMID: 25035864]
  39. Proc Natl Acad Sci U S A. 1929 Sep 15;15(9):754-64 [PMID: 16577234]
  40. Cryobiology. 2003 Oct;47(2):125-42 [PMID: 14580847]
  41. Appl Spectrosc. 2005 Feb;59(2):190-3 [PMID: 15720759]
  42. Int J Artif Organs. 2013 Nov;36(11):775-80 [PMID: 24338652]
  43. PLoS One. 2012;7(9):e41990 [PMID: 22957018]
  44. Pediatr Res. 1976 Sep;10(9):782-8 [PMID: 8755]
  45. Pediatr Res. 2001 Jun;49(6):770-6 [PMID: 11385136]
  46. PLoS One. 2013 Aug 29;8(8):e70488 [PMID: 24009655]
  47. Biochemistry. 1981 Mar 3;20(5):1332-8 [PMID: 6261789]
  48. Free Radic Biol Med. 2012 Apr 15;52(8):1382-402 [PMID: 22326617]
  49. Am J Transplant. 2015 Feb;15(2):295-6 [PMID: 25612481]
  50. Nature. 2018 May;557(7703):50-56 [PMID: 29670285]
  51. Nat Med. 2014 Jul;20(7):790-3 [PMID: 24973919]
  52. J Nutr. 1991 Oct;121(10):1613-21 [PMID: 1765826]
  53. Am J Transplant. 2014 Jun;14(6):1400-9 [PMID: 24758155]
  54. Nat Biotechnol. 2017 Jun 7;35(6):530-542 [PMID: 28591112]

Grants

  1. R01 DK107875/NIDDK NIH HHS
  2. R01 HL157803/NHLBI NIH HHS
  3. R01 DK096075/NIDDK NIH HHS
  4. R43 DK120127/NIDDK NIH HHS
  5. R00 HL143149/NHLBI NIH HHS
  6. R01 DK114506/NIDDK NIH HHS

MeSH Term

Animals
Biobehavioral Sciences
Early Diagnosis
Humans
Liver
Mitochondria, Liver
Oxidation-Reduction
Perfusion
Rats
Reperfusion Injury
Spectrum Analysis, Raman

Word Cloud

Created with Highcharts 10.0.0IRIliversdiagnosticmitochondrialredoxtransplantationusedreperfusioninjurycanleadmayischemiastatequantificationhepaticmachineperfusionIschemiacriticalproblemliverlife-threateningcomplicationssubstantiallylimitutilizationHoweverearlydiagnosticsavailablefulminantbecomeevidentpost-transplantMitochondriaplaycentralroleidealtargetchangesformfirstlinkchaineventsstudyresonanceRamanspectroscopyproviderapidnon-invasivelabel-freestatusshowsignificantlydistinguishtransplantableversusnon-transplantableischemicallyinjuredratoxygenateddemonstratespatialdifferencesresponsenovelfuturepredictviabilityhumantoolbetterunderstandmechanismsNon-invasive

Similar Articles

Cited By (4)