Quorum Sensing Quinolone Signal Forms Chiral Supramolecular Assemblies With the Host Defense Peptide LL-37.

Ferenc Zsila, Maria Ricci, Imola Csilla Szigyártó, Priyanka Singh, Tamás Beke-Somfai
Author Information
  1. Ferenc Zsila: Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.
  2. Maria Ricci: Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.
  3. Imola Csilla Szigyártó: Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.
  4. Priyanka Singh: Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.
  5. Tamás Beke-Somfai: Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.

Abstract

Host defense antimicrobial peptides (HDPs) constitute an integral component of the innate immune system having nonspecific activity against a broad spectrum of microorganisms. They also have diverse biological functions in wound healing, angiogenesis, and immunomodulation, where it has also been demonstrated that they have a high affinity to interact with human lipid signaling molecules. Within bacterial biofilms, quorum sensing (QS), the vital bacterial cell-to-cell communication system, is maintained by similar diffusible small molecules which control phenotypic traits, virulence factors, biofilm formation, and dispersion. Efficient eradication of bacterial biofilms is of particular importance as these colonies greatly help individual cells to tolerate antibiotics and develop antimicrobial resistance. Regarding the antibacterial function, for several HDPs, including the human cathelicidin LL-37, affinity to eradicate biofilms can exceed their activity to kill individual bacteria. However, related underlying molecular mechanisms have not been explored yet. Here, we employed circular dichroism (CD) and UV/VIS spectroscopic analysis, which revealed that LL-37 exhibits QS signal affinity. This archetypal representative of HDPs interacts with the Quinolone signal (PQS) molecules, producing co-assemblies with peculiar optical activity. The binding of PQS onto the asymmetric peptide chains results in chiral supramolecular architectures consisting of helically disposed, J-aggregated molecules. Besides the well-known bacterial membrane disruption activity, our data propose a novel action mechanism of LL-37. As a specific case of the so-called quorum quenching, QS signal molecules captured by the peptide are sequestered inside co-assemblies, which may interfere with the microbial QS network helping to prevent and eradicate bacterial infections.

Keywords

References

  1. Org Biomol Chem. 2011 Jun 7;9(11):4127-37 [PMID: 21483967]
  2. Chirality. 2018 Feb;30(2):195-205 [PMID: 29110341]
  3. Biopolymers. 2012;98(4):251-67 [PMID: 23193590]
  4. Angew Chem Int Ed Engl. 2011 Apr 4;50(15):3376-410 [PMID: 21442690]
  5. Front Cell Infect Microbiol. 2018 Jul 04;8:230 [PMID: 30023354]
  6. Front Microbiol. 2021 Jan 28;12:611413 [PMID: 33584614]
  7. Sci Rep. 2018 Sep 28;8(1):14499 [PMID: 30266943]
  8. Exp Dermatol. 2016 Mar;25(3):167-73 [PMID: 26738772]
  9. Chem Sci. 2016 Apr 21;7(4):2553-2562 [PMID: 28660026]
  10. Nat Commun. 2019 Mar 4;10(1):1012 [PMID: 30833557]
  11. Curr Protein Pept Sci. 2013 Sep;14(6):504-14 [PMID: 23968350]
  12. Biopolymers. 1975 Jun;14(6):1213-21 [PMID: 240463]
  13. Front Microbiol. 2017 Dec 07;8:2409 [PMID: 29375486]
  14. Front Immunol. 2020 Aug 28;11:1827 [PMID: 32983093]
  15. Infect Immun. 2008 Sep;76(9):4176-82 [PMID: 18591225]
  16. Cell Physiol Biochem. 2018;47(3):1060-1073 [PMID: 29843147]
  17. Annu Rev Microbiol. 2001;55:165-99 [PMID: 11544353]
  18. J Bacteriol. 2015 Nov;197(22):3583-91 [PMID: 26350132]
  19. Nat Rev Microbiol. 2017 Dec;15(12):740-755 [PMID: 28944770]
  20. Biochem Biophys Res Commun. 2020 Jun 4;526(3):780-785 [PMID: 32265033]
  21. Biofouling. 2017 Aug;33(7):544-555 [PMID: 28675109]
  22. Crit Rev Immunol. 2019;39(2):83-92 [PMID: 31679249]
  23. PLoS One. 2013 Dec 13;8(12):e82240 [PMID: 24349231]
  24. Cancers (Basel). 2018 Mar 15;10(3): [PMID: 29543710]
  25. Q Rev Biophys. 2020 Mar 02;53:e5 [PMID: 32115014]
  26. Int J Mol Sci. 2021 Mar 18;22(6): [PMID: 33803907]
  27. Biomolecules. 2020 Apr 23;10(4): [PMID: 32340301]
  28. Annu Rev Microbiol. 2020 Sep 8;74:201-219 [PMID: 32660382]
  29. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 [PMID: 27510863]
  30. Indian J Microbiol. 2019 Mar;59(1):3-12 [PMID: 30728625]
  31. Nat Rev Immunol. 2016 May;16(5):321-34 [PMID: 27087664]
  32. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  33. J Biol Chem. 1998 Feb 6;273(6):3718-24 [PMID: 9452503]
  34. Biochemistry. 1993 Sep 21;32(37):9668-76 [PMID: 8373771]
  35. Nat Commun. 2020 Aug 4;11(1):3894 [PMID: 32753597]
  36. Int J Biol Macromol. 2019 May 15;129:50-60 [PMID: 30716372]
  37. Front Chem. 2017 Nov 07;5:86 [PMID: 29164103]
  38. J Am Chem Soc. 2006 Jan 18;128(2):510-6 [PMID: 16402838]
  39. ACS Pharmacol Transl Sci. 2020 Dec 03;4(1):155-167 [PMID: 33615169]
  40. Biochim Biophys Acta. 2006 Sep;1758(9):1408-25 [PMID: 16716248]
  41. Vaccines (Basel). 2018 Sep 14;6(3): [PMID: 30223448]
  42. Cell Immunol. 2012 Nov;280(1):22-35 [PMID: 23246832]
  43. Biochemistry. 2008 May 20;47(20):5565-72 [PMID: 18439024]
  44. Chem Soc Rev. 2014 Aug 7;43(15):5211-33 [PMID: 24825540]
  45. Radiat Res. 1963 Sep;20:55-70 [PMID: 14061481]

Word Cloud

Created with Highcharts 10.0.0moleculesbacterialLL-37activityQSHDPsaffinitybiofilmsquorumsignalco-assembliesHostdefenseantimicrobialpeptidessystemalsohumansensingindividualeradicatecirculardichroismPQSpeptidesupramolecularconstituteintegralcomponentinnateimmunenonspecificbroadspectrummicroorganismsdiversebiologicalfunctionswoundhealingangiogenesisimmunomodulationdemonstratedhighinteractlipidsignalingWithinvitalcell-to-cellcommunicationmaintainedsimilardiffusiblesmallcontrolphenotypictraitsvirulencefactorsbiofilmformationdispersionEfficienteradicationparticularimportancecoloniesgreatlyhelpcellstolerateantibioticsdevelopresistanceRegardingantibacterialfunctionseveralincludingcathelicidincanexceedkillbacteriaHoweverrelatedunderlyingmolecularmechanismsexploredyetemployedCDUV/VISspectroscopicanalysisrevealedexhibitsarchetypalrepresentativeinteractsquinoloneproducingpeculiaropticalbindingontoasymmetricchainsresultschiralarchitecturesconsistinghelicallydisposedJ-aggregatedBesideswell-knownmembranedisruptiondataproposenovelactionmechanismspecificcaseso-calledquenchingcapturedsequesteredinsidemayinterferemicrobialnetworkhelpingpreventinfectionsQuorumSensingQuinoloneSignalFormsChiralSupramolecularAssembliesDefensePeptideJ-aggregateshostchirality

Similar Articles

Cited By