Rational gRNA design based on transcription factor binding data.

David Bergenholm, Yasaman Dabirian, Raphael Ferreira, Verena Siewers, Florian David, Jens Nielsen
Author Information
  1. David Bergenholm: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID
  2. Yasaman Dabirian: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID
  3. Raphael Ferreira: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID
  4. Verena Siewers: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID
  5. Florian David: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID
  6. Jens Nielsen: Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. ORCID

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of transcription factor (TF) binding data to obtain a better understanding of the interplay between TF binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9-VPR toward binding sites of Gcr1-Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9-VPR was targeted next to a TF binding motif, whereas a downregulation or no change was observed when dCas9 was bound on a TF motif. This suggests a steric competition between dCas9 and the specific TF. Integrating TF binding data, therefore, proved to be useful for designing guide RNAs for CRISPR interference or CRISPR activation applications.

Keywords

References

  1. Cell Rep. 2016 Aug 30;16(9):2525-37 [PMID: 27545896]
  2. Nat Methods. 2013 Oct;10(10):973-6 [PMID: 23892895]
  3. Nat Methods. 2015 Apr;12(4):326-8 [PMID: 25730490]
  4. Yeast. 1994 Oct;10(10):1329-39 [PMID: 7900422]
  5. Genetics. 2011 Nov;189(3):705-36 [PMID: 22084422]
  6. Nucleic Acids Res. 2019 Jun 4;47(10):4986-5000 [PMID: 30976803]
  7. ACS Synth Biol. 2015 Sep 18;4(9):975-86 [PMID: 25871405]
  8. Mol Cell Biol. 1995 May;15(5):2646-53 [PMID: 7739544]
  9. Mol Cell Biol. 1995 Mar;15(3):1405-21 [PMID: 7862134]
  10. FEMS Yeast Res. 2018 Jun 1;18(4): [PMID: 29726937]
  11. Yeast. 2005 Jan 30;22(2):111-27 [PMID: 15645478]
  12. ACS Synth Biol. 2017 Oct 20;6(10):1931-1943 [PMID: 28700213]
  13. Science. 2014 Nov 28;346(6213):1258096 [PMID: 25430774]
  14. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  15. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  16. Curr Biol. 1995 Aug 1;5(8):859-61 [PMID: 7583141]
  17. Yeast. 2006 Apr 15;23(5):333-49 [PMID: 16598699]
  18. J Cell Biol. 2016 Aug 29;214(5):529-37 [PMID: 27551060]
  19. Mol Cell Biol. 1990 Dec;10(12):6389-96 [PMID: 2247062]
  20. Mol Cell Biol. 1986 Nov;6(11):3774-84 [PMID: 3025612]
  21. Nature. 2018 Apr 5;556(7699):57-63 [PMID: 29512652]
  22. mSystems. 2018 Jul 31;3(4): [PMID: 30073202]
  23. Science. 2017 Sep 29;357(6358):1420-1424 [PMID: 28963258]
  24. FEMS Yeast Res. 2014 Mar;14(2):238-48 [PMID: 24151867]
  25. Cell. 2013 Feb 28;152(5):1173-83 [PMID: 23452860]
  26. Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):75-83 [PMID: 27546191]
  27. Yeast. 1992 Jul;8(7):501-17 [PMID: 1523884]
  28. Science. 2016 Jan 1;351(6268):84-8 [PMID: 26628643]
  29. Microb Cell Fact. 2017 Mar 15;16(1):46 [PMID: 28298224]
  30. Cell. 2014 Jun 5;157(6):1262-1278 [PMID: 24906146]
  31. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  32. Genetics. 2012 Feb;190(2):351-87 [PMID: 22345607]
  33. ACS Synth Biol. 2013 Oct 18;2(10):604-13 [PMID: 23977949]
  34. Nat Rev Microbiol. 2011 Jun;9(6):467-77 [PMID: 21552286]
  35. Cell Metab. 2014 Jun 3;19(6):952-66 [PMID: 24814484]
  36. Elife. 2013 Jan 29;2:e00471 [PMID: 23386978]
  37. Mol Syst Biol. 2009;5:276 [PMID: 19536199]

Word Cloud

Created with Highcharts 10.0.0bindingTFdCas9dataCRISPRtranscriptionfactortoolgenetargeteddCas9-VPRpromotersobservedmotifgRNAdesignclusteredregularlyinterspacedshortpalindromicrepeats/Cas9systembecomestandardmanygenomeengineeringendeavorsendonuclease-deficientversionCas9alsopowerfulprogrammableregulationstudymadeuseobtainbetterunderstandinginterplayfusedactivatordomainVPRspecificallytowardsitesGcr1-Gcr2Tye7presentseveralgenesencodingenzymesengagedcentralcarbonmetabolismupregulationexpressionnextwhereasdownregulationchangeboundsuggestsstericcompetitionspecificIntegratingthereforeprovedusefuldesigningguideRNAsinterferenceactivationapplicationsRationalbasedCRISPRaSaccharomycescerevisiaeglycolytic

Similar Articles

Cited By