Structural basis of polyamine transport by human ATP13A2 (PARK9).

Sue Im Sim, Sören von Bülow, Gerhard Hummer, Eunyong Park
Author Information
  1. Sue Im Sim: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
  2. Sören von Bülow: Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
  3. Gerhard Hummer: Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
  4. Eunyong Park: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA. Electronic address: eunyong_park@berkeley.edu.

Abstract

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.

Keywords

References

  1. Biochem J. 1997 Jul 15;325 ( Pt 2):289-97 [PMID: 9230104]
  2. J Biol Chem. 1996 May 24;271(21):12205-8 [PMID: 8647815]
  3. Mol Genet Genomic Med. 2020 Mar;8(3):e1052 [PMID: 31944623]
  4. Cell Rep. 2020 Sep 29;32(13):108208 [PMID: 32997992]
  5. Annu Rev Biophys. 2011;40:243-66 [PMID: 21351879]
  6. Sci Rep. 2014 Oct 30;4:6836 [PMID: 25355561]
  7. Biochem J. 2013 Feb 15;450(1):47-53 [PMID: 23205587]
  8. Neuron. 2018 Sep 5;99(5):956-968.e4 [PMID: 30122377]
  9. Biochem Pharmacol. 1986 Nov 15;35(22):4037-41 [PMID: 3778525]
  10. J Cell Biol. 2019 Jan 7;218(1):267-284 [PMID: 30538141]
  11. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  12. Int J Biochem Cell Biol. 2010 Jan;42(1):39-51 [PMID: 19643201]
  13. Nature. 2013 Mar 14;495(7440):265-9 [PMID: 23455424]
  14. Mov Disord. 2009 Oct 30;24(14):2104-11 [PMID: 19705361]
  15. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  16. EMBO J. 2012 Jun 26;31(14):3038-62 [PMID: 22735187]
  17. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  18. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  19. Front Chem. 2018 Feb 05;6:10 [PMID: 29468148]
  20. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7 [PMID: 15215472]
  21. Biochem Soc Trans. 2019 Oct 31;47(5):1247-1257 [PMID: 31671180]
  22. PLoS One. 2018 Mar 5;13(3):e0193228 [PMID: 29505581]
  23. Cell Rep. 2020 Sep 8;32(10):108101 [PMID: 32905774]
  24. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):720-9 [PMID: 21714071]
  25. PLoS Comput Biol. 2012;8(10):e1002708 [PMID: 23093919]
  26. Nature. 2004 Nov 18;432(7015):361-8 [PMID: 15448704]
  27. PLoS One. 2012;7(6):e39942 [PMID: 22768177]
  28. Science. 2020 Sep 25;369(6511): [PMID: 32973005]
  29. Mov Disord Clin Pract. 2016 Apr 26;4(1):132-135 [PMID: 30713959]
  30. Nat Genet. 2006 Oct;38(10):1184-91 [PMID: 16964263]
  31. Science. 2019 Sep 13;365(6458):1149-1155 [PMID: 31416931]
  32. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544 [PMID: 29872004]
  33. BMC Biotechnol. 2017 Nov 16;17(1):83 [PMID: 29145860]
  34. Nature. 2019 Jul;571(7765):366-370 [PMID: 31243363]
  35. Biomed Res Int. 2014;2014:371256 [PMID: 25197640]
  36. Biochem J. 1999 Dec 15;344 Pt 3:633-42 [PMID: 10585849]
  37. Neurobiol Aging. 2012 Aug;33(8):1843.e1-7 [PMID: 22296644]
  38. Curr Opin Struct Biol. 2010 Aug;20(4):431-9 [PMID: 20634056]
  39. Nature. 2000 Jun 8;405(6787):647-55 [PMID: 10864315]
  40. Hum Mutat. 2011 Aug;32(8):956-64 [PMID: 21542062]
  41. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  42. Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31198-31207 [PMID: 33229544]
  43. Nat Chem Biol. 2020 Jun;16(6):644-652 [PMID: 32367017]
  44. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  45. J Am Soc Mass Spectrom. 1999 Apr;10(4):300-8 [PMID: 10197351]
  46. J Biol Chem. 2005 Jun 24;280(25):24267-76 [PMID: 15855155]
  47. Science. 2004 Jun 11;304(5677):1672-5 [PMID: 15192230]
  48. Nature. 2007 Dec 13;450(7172):1043-9 [PMID: 18075585]
  49. Anal Chem. 1996 Jan 1;68(1):1-8 [PMID: 8779426]
  50. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  51. Front Physiol. 2017 Jun 06;8:371 [PMID: 28634454]
  52. J Biol Chem. 2021 Jan-Jun;296:100182 [PMID: 33310703]
  53. J Neurosci. 2012 Mar 21;32(12):4240-6 [PMID: 22442086]
  54. Biochem J. 2020 Oct 16;477(19):3769-3790 [PMID: 33045059]
  55. Neurology. 2008 Apr 15;70(16 Pt 2):1491-3 [PMID: 18413573]
  56. FASEB J. 2010 Jan;24(1):206-17 [PMID: 19762559]
  57. J Chem Theory Comput. 2015 May 12;11(5):2144-55 [PMID: 26574417]
  58. Nature. 2007 Dec 13;450(7172):1036-42 [PMID: 18075584]
  59. Elife. 2020 Dec 15;9: [PMID: 33320091]
  60. PLoS One. 2015 Dec 30;10(12):e0146021 [PMID: 26717316]
  61. Cell Rep. 2020 Nov 10;33(6):108363 [PMID: 33176140]
  62. Neurology. 2007 May 8;68(19):1557-62 [PMID: 17485642]
  63. Protein Sci. 1996 Oct;5(10):1984-90 [PMID: 8897598]
  64. Trends Neurosci. 2019 Dec;42(12):899-912 [PMID: 31704179]
  65. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6343-7 [PMID: 22492932]
  66. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9611-6 [PMID: 22647602]
  67. J Chem Theory Comput. 2013 Mar 12;9(3):1694-708 [PMID: 26587629]
  68. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9040-5 [PMID: 26134396]
  69. Nature. 2009 May 21;459(7245):446-50 [PMID: 19458722]
  70. Brain Dev. 2018 Oct;40(9):824-826 [PMID: 29903538]
  71. Neurocase. 2019 Jun - Aug;25(3-4):133-137 [PMID: 31232173]
  72. Nat Methods. 2019 Nov;16(11):1146-1152 [PMID: 31591575]
  73. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):846-55 [PMID: 20416272]
  74. Eur J Hum Genet. 2016 Oct;24(10):1460-6 [PMID: 27165006]
  75. Hum Mol Genet. 2012 Jun 15;21(12):2646-50 [PMID: 22388936]
  76. Nat Rev Mol Cell Biol. 2004 Apr;5(4):282-95 [PMID: 15071553]
  77. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  78. Brain. 2017 Feb;140(2):287-305 [PMID: 28137957]
  79. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]
  80. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  81. Nat Genet. 2009 Mar;41(3):308-15 [PMID: 19182805]
  82. J Chem Theory Comput. 2013 Jan 8;9(1):687-97 [PMID: 26589065]
  83. Hum Genomics. 2019 Apr 16;13(1):19 [PMID: 30992063]
  84. IUBMB Life. 2009 Sep;61(9):880-94 [PMID: 19603518]
  85. Neurogenetics. 2011 Feb;12(1):33-9 [PMID: 20853184]
  86. Mol Phylogenet Evol. 2008 Feb;46(2):619-34 [PMID: 18155930]

Grants

  1. T32 GM008295/NIGMS NIH HHS

MeSH Term

Animals
Biological Transport
Catalysis
Cryoelectron Microscopy
Cytosol
Humans
Lipids
Lysosomes
Molecular Dynamics Simulation
Parkinson Disease
Phosphorylation
Polyamines
Protein Conformation
Protein Domains
Proton-Translocating ATPases
Saccharomyces cerevisiae
Spodoptera

Chemicals

ATP13A2 protein, human
Lipids
Polyamines
Proton-Translocating ATPases

Word Cloud

Created with Highcharts 10.0.0polyamineATP13A2transportpolyaminesP5B-ATPasesParkinson'sdiseaseunderstandcryo-EMstructureshumanbasiswithinmembranePolyaminessmallorganicpolycationsubiquitousessentialformslifeCurrentlytransportedacrossmembranesunderstoodRecentstudiessuggestedclosehomologscollectivelyknowntransportersendo-/lysosomesLoss-of-functionmutationshumanscausehereditaryearly-onsetmechanismdeterminedhigh-resolutioncryoelectronmicroscopyfivedistinctconformationalintermediatestogetherrepresentnear-completecyclestructuralspecificityrevealedendogenousmoleculeboundnarrowelongatedcavitytransmembranedomainshowatypicalpathwater-solublesubstratemayexitcytosolicleafletstudyprovidesimportantmechanisticinsightsframeworkfunctionsmechanismsStructuralPARK9P-typeATPaseP5B-ATPaselysosomeproteinsperminetransporter

Similar Articles

Cited By