Artificial Intelligence Based Body Sensor Network Framework-Narrative Review: Proposing an End-to-End Framework using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data Mining and Knowledge Discovery in Sports and Healthcare.

Ashwin A Phatak, Franz-Georg Wieland, Kartik Vempala, Frederik Volkmar, Daniel Memmert
Author Information
  1. Ashwin A Phatak: Institute of Exercise Training and Sport Informatics, German Sports University, Cologne, Germany. a.phatak@dshs-koeln.de. ORCID
  2. Franz-Georg Wieland: Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.
  3. Kartik Vempala: Bloomberg LP, New York, USA.
  4. Frederik Volkmar: Institute of Exercise Training and Sport Informatics, German Sports University, Cologne, Germany.
  5. Daniel Memmert: Institute of Exercise Training and Sport Informatics, German Sports University, Cologne, Germany.

Abstract

With the rising amount of data in the sports and health sectors, a plethora of applications using big data mining have become possible. Multiple frameworks have been proposed to mine, store, preprocess, and analyze physiological vitals data using artificial intelligence and machine learning algorithms. Comparatively, less research has been done to collect potentially high volume, high-quality 'big data' in an organized, time-synchronized, and holistic manner to solve similar problems in multiple fields. Although a large number of data collection devices exist in the form of sensors. They are either highly specialized, univariate and fragmented in nature or exist in a lab setting. The current study aims to propose artificial intelligence-based body sensor network framework (AIBSNF), a framework for strategic use of body sensor networks (BSN), which combines with real-time location system (RTLS) and wearable biosensors to collect multivariate, low noise, and high-fidelity data. This facilitates gathering of time-synchronized location and physiological vitals data, which allows artificial intelligence and machine learning (AI/ML)-based time series analysis. The study gives a brief overview of wearable sensor technology, RTLS, and provides use cases of AI/ML algorithms in the field of sensor fusion. The study also elaborates sample scenarios using a specific sensor network consisting of pressure sensors (insoles), accelerometers, gyroscopes, ECG, EMG, and RTLS position detectors for particular applications in the field of health care and sports. The AIBSNF may provide a solid blueprint for conducting research and development, forming a smooth end-to-end pipeline from data collection using BSN, RTLS and final stage analytics based on AI/ML algorithms.

Keywords

References

  1. Sensors (Basel). 2019 Jul 21;19(14): [PMID: 31330919]
  2. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3966-9 [PMID: 18002868]
  3. Processes (Basel). 2017;5(3): [PMID: 30406024]
  4. PLoS One. 2019 Jan 31;14(1):e0211466 [PMID: 30703141]
  5. Afr Health Sci. 2014 Sep;14(3):743-52 [PMID: 25352897]
  6. Nat Commun. 2016 May 23;7:11650 [PMID: 27212140]
  7. Iran J Public Health. 2019 Apr;48(4):593-602 [PMID: 31110969]
  8. Curr Treat Options Cardiovasc Med. 2019 Dec 21;21(12):95 [PMID: 31865466]
  9. Med Eng Phys. 2015 Jul;37(7):698-704 [PMID: 25937613]
  10. Healthc Manage Forum. 2020 Jan;33(1):47-49 [PMID: 31340674]
  11. Int J Health Geogr. 2012 Jun 28;11:25 [PMID: 22741760]
  12. NPJ Digit Med. 2019 Feb 13;2:8 [PMID: 31304358]
  13. Sports Med Open. 2019 Jul 3;5(1):28 [PMID: 31270636]
  14. Nat Biotechnol. 2019 Apr;37(4):389-406 [PMID: 30804534]
  15. Physiol Res. 2007;56(4):403-410 [PMID: 16925463]
  16. Sports Med. 2019 May;49(5):783-818 [PMID: 30903440]
  17. Sensors (Basel). 2017 Dec 04;17(12): [PMID: 29207535]
  18. Sports Med. 2020 Feb;50(2):343-385 [PMID: 31571155]
  19. Biosens Bioelectron. 2020 Oct 15;166:112460 [PMID: 32862846]
  20. Small. 2018 Jan;14(3): [PMID: 29205836]
  21. Nat Biomed Eng. 2018 Oct;2(10):719-731 [PMID: 31015651]
  22. Sports (Basel). 2018 Oct 26;6(4): [PMID: 30373111]
  23. Sensors (Basel). 2019 Feb 22;19(4): [PMID: 30813379]
  24. Sports Med. 2002;32(14):879-85 [PMID: 12427049]
  25. NPJ Digit Med. 2019 Jul 22;2:72 [PMID: 31341957]
  26. Sensors (Basel). 2019 Jun 12;19(12): [PMID: 31212742]
  27. IEEE Trans Biomed Eng. 2019 May;66(5):1242-1258 [PMID: 31021744]
  28. Health Inf Sci Syst. 2014 Feb 07;2:3 [PMID: 25825667]
  29. Sports Med. 2015 Jul;45(7):1065-81 [PMID: 25834998]
  30. J Neuroeng Rehabil. 2017 Sep 12;14(1):94 [PMID: 28899433]
  31. Sensors (Basel). 2020 Aug 17;20(16): [PMID: 32824477]
  32. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1648-51 [PMID: 24110020]
  33. SLAS Technol. 2020 Feb;25(1):9-24 [PMID: 31829083]
  34. Heart Views. 2018 Jul-Sep;19(3):117-120 [PMID: 31007864]
  35. Sensors (Basel). 2009;9(10):7771-7784 [PMID: 22408479]
  36. Sports Med Open. 2018 Jun 05;4(1):24 [PMID: 29869300]
  37. Eur J Sport Sci. 2018 May;18(4):450-457 [PMID: 29385963]
  38. Springerplus. 2016 Aug 24;5(1):1410 [PMID: 27610328]
  39. Sensors (Basel). 2017 Feb 21;17(2): [PMID: 28230767]
  40. Biosens Bioelectron. 2021 Mar 15;176:112946 [PMID: 33412429]
  41. Appl Bionics Biomech. 2020 Jun 23;2020:2041549 [PMID: 32676126]
  42. PM R. 2018 Sep;10(9 Suppl 2):S220-S232 [PMID: 30269807]
  43. Sensors (Basel). 2019 Oct 17;19(20): [PMID: 31627331]
  44. Sci Rep. 2015 Oct 21;5:15508 [PMID: 26487040]
  45. Sports Med. 2018 May;48(5):1221-1246 [PMID: 29476427]
  46. Nature. 2016 Jan 28;529(7587):509-514 [PMID: 26819044]
  47. Indian Heart J. 2016 May-Jun;68(3):332-5 [PMID: 27316486]
  48. Sensors (Basel). 2011;11(10):9778-97 [PMID: 22163725]
  49. Nat Commun. 2020 Jan 23;11(1):444 [PMID: 31974376]
  50. J Med Internet Res. 2020 May 26;22(5):e19437 [PMID: 32412416]
  51. Biosens Bioelectron. 2020 Nov 15;168:112569 [PMID: 32905930]
  52. Future Sci OA. 2019 Sep 26;5(9):FSO416 [PMID: 31608155]
  53. Sensors (Basel). 2021 Feb 20;21(4): [PMID: 33672459]
  54. Science. 2018 Dec 7;362(6419):1140-1144 [PMID: 30523106]

Word Cloud

Created with Highcharts 10.0.0datausingsensorRTLSartificialalgorithmsstudybodylocationAI/MLsportshealthapplicationsphysiologicalvitalsintelligencemachinelearningresearchcollecttime-synchronizedcollectionexistsensorsnetworkframeworkAIBSNFusenetworksBSNsystemwearablebiosensorsanalysisfieldfusionArtificialWearableDataSportsrisingamountsectorsplethorabigminingbecomepossibleMultipleframeworksproposedminestorepreprocessanalyzeComparativelylessdonepotentiallyhighvolumehigh-quality'bigdata'organizedholisticmannersolvesimilarproblemsmultiplefieldsAlthoughlargenumberdevicesformeitherhighlyspecializedunivariatefragmented innaturelabsettingcurrentaimsproposeintelligence-basedstrategiccombinesreal-timemultivariatelownoisehigh-fidelityfacilitatesgatheringallows-basedtimeseriesgivesbriefoverviewtechnologyprovidescasesalsoelaboratessamplescenariosspecificconsistingpressureinsolesaccelerometersgyroscopesECGEMGpositiondetectorsparticularcaremayprovidesolidblueprintconductingdevelopmentformingsmoothend-to-endpipelinefinalstageanalyticsbasedIntelligence BasedBodySensorNetworkFramework-NarrativeReview:ProposingEnd-to-EndFrameworkSensorsReal-TimeLocationSystemsIntelligence/MachineLearningAlgorithmsCollectionMiningKnowledgeDiscoveryHealthcareMulti-sensorReal-timeVitalsWirelessarea

Similar Articles

Cited By