Exercise prevents HFD-induced insulin resistance risk: involvement of TNF-α level regulated by vagus nerve-related anti-inflammatory pathway in the spleen.

Zhengxi Huang, Jialing Tang, Kai Ji
Author Information
  1. Zhengxi Huang: Department of Physical Education, Wuhan College, No 333, Huangjiahu Road, Wuhan, 430212, Hubei Province, China.
  2. Jialing Tang: Department of Physical Education, Central South University, Changsha, 410083, Hunan Province, China. q0tangjialing@outlook.com.
  3. Kai Ji: College of Physical Education, Wuhan Sports University, Wuhan, 430212, Hubei Province, China. jikaiwsu@outlook.com.

Abstract

OBJECTIVES: Regular physical exercise can improve insulin resistance in insulin target tissues. However, the mechanisms about the beneficial effect of exercise on insulin resistance are not yet fully resolved. This study was carried out to address whether insulin resistance improvement by exercise is involved in an anti-inflammatory pathway in the spleen in high-fat diet (HFD) feeding mice.
METHODS: Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed.
RESULTS: We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention.
CONCLUSIONS: These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.

Keywords

References

  1. J Diabetes Res. 2016;2016:2902351 [PMID: 27547764]
  2. Biomed Res Int. 2014;2014:402175 [PMID: 25136584]
  3. Int J Mol Sci. 2017 Jun 07;18(6): [PMID: 28590409]
  4. Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):9117-9125 [PMID: 31696503]
  5. Front Physiol. 2019 Apr 25;10:459 [PMID: 31105582]
  6. Compr Physiol. 2013 Jan;3(1):1-58 [PMID: 23720280]
  7. Am J Physiol Gastrointest Liver Physiol. 2018 Nov 1;315(5):G651-G658 [PMID: 30001146]
  8. Curr Opin Neurobiol. 2020 Jun;62:115-121 [PMID: 32126362]
  9. Front Immunol. 2017 Sep 06;8:1085 [PMID: 28932225]
  10. Trends Endocrinol Metab. 2000 Aug;11(6):212-7 [PMID: 10878750]
  11. Inflamm Cell Signal. 2014;1(6):e561 [PMID: 26046098]
  12. Front Immunol. 2019 Mar 22;10:565 [PMID: 30967878]
  13. Diabetologia. 1991 Jun;34(6):416-22 [PMID: 1884900]
  14. Arq Bras Cardiol. 2019 Dec;113(6):1139-1148 [PMID: 31644699]
  15. J Cell Physiol. 2019 Jun;234(6):8152-8161 [PMID: 30317615]
  16. Diabetes. 2004 Dec;53 Suppl 3:S215-9 [PMID: 15561913]
  17. Science. 1996 Feb 2;271(5249):665-8 [PMID: 8571133]
  18. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):11008-13 [PMID: 18669662]
  19. Front Immunol. 2017 Nov 02;8:1452 [PMID: 29163522]
  20. Brain Behav Immun. 2019 Jan;75:181-191 [PMID: 30394312]
  21. Endocr Metab Immune Disord Drug Targets. 2018;18(1):63-74 [PMID: 29165098]
  22. PLoS One. 2019 Mar 28;14(3):e0214317 [PMID: 30921373]
  23. Nat Med. 2014 Mar;20(3):291-5 [PMID: 24562381]
  24. Crit Rev Eukaryot Gene Expr. 2016;26(3):187-98 [PMID: 27650984]
  25. Am J Physiol Endocrinol Metab. 2015 Apr 1;308(7):E573-82 [PMID: 25628421]
  26. Scand J Med Sci Sports. 2012 Oct;22(5):643-52 [PMID: 21410542]
  27. J Exp Med. 2006 Jul 10;203(7):1623-8 [PMID: 16785311]
  28. J Appl Physiol (1985). 2011 May;110(5):1311-8 [PMID: 21270351]
  29. Nature. 1997 Oct 9;389(6651):610-4 [PMID: 9335502]
  30. Biomolecules. 2019 Jun 07;9(6): [PMID: 31181700]
  31. J Endocrinol. 2019 Apr 1;241(1):59-70 [PMID: 30878016]
  32. Life Sci. 2017 Dec 15;191:122-131 [PMID: 28843495]
  33. Exerc Immunol Rev. 2015;21:42-57 [PMID: 25826388]
  34. Front Physiol. 2014 Mar 24;5:118 [PMID: 24715877]
  35. Nat Rev Endocrinol. 2018 Mar;14(3):140-162 [PMID: 29348476]
  36. Mol Med. 2012 May 09;18:618-27 [PMID: 22354214]
  37. J Appl Physiol (1985). 2005 Apr;98(4):1154-62 [PMID: 15772055]
  38. Exerc Immunol Rev. 2015;21:58-68 [PMID: 25825956]
  39. PLoS One. 2018 Sep 10;13(9):e0203551 [PMID: 30199540]
  40. Int J Sports Med. 2000 Jan;21(1):1-12 [PMID: 10683091]
  41. Sheng Li Ke Xue Jin Zhan. 2013 Jun;44(3):237-41 [PMID: 24027835]
  42. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 19;373(1738): [PMID: 29203714]

Word Cloud

Created with Highcharts 10.0.0insulinexerciseresistanceactivitylevelspleenTNF-αmiceacetylcholineChATPKCanti-inflammatoryHoweverbeneficialeffectpathwaydietHFDfeedingsVNStolerancetestnecrosisfactor-alphaHFD-inducedglucoseintoleranceincreaseinterventionExerciseOBJECTIVES:Regularphysicalcanimprovetargettissuesmechanismsyetfullyresolvedstudycarriedaddresswhetherimprovementinvolvedhigh-fatMETHODS:MaleC57Bl/6Jwithoutsubdiaphragmaticvagotomysubjectedmedium-intensitytreadmillGlucosedetectedcholineacetyltransferaseproteinkinaseCtumorassayedRESULTS:foundsignificantlyimprovesalongdecreasesystemHFD-fedabolisheddecreasedHFD-miceCONCLUSIONS:datarevealpreventionHFD-associatedinvolvesreducingsplenicmediatedcholinergicviainfluencingconcentrationpreventsrisk:involvementregulatedvagusnerve-relatedHigh-fatInsulinSpleenTumor

Similar Articles

Cited By