Lipid Remodeling Reveals the Adaptations of a Marine Diatom to Ocean Acidification.

Peng Jin, Zhe Liang, Hua Lu, Jinmei Pan, Peiyuan Li, Quanting Huang, Yingyan Guo, Jiahui Zhong, Futian Li, Jiaofeng Wan, Sebastian Overmans, Jianrong Xia
Author Information
  1. Peng Jin: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  2. Zhe Liang: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  3. Hua Lu: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  4. Jinmei Pan: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  5. Peiyuan Li: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  6. Quanting Huang: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  7. Yingyan Guo: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  8. Jiahui Zhong: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  9. Futian Li: Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.
  10. Jiaofeng Wan: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
  11. Sebastian Overmans: King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia.
  12. Jianrong Xia: School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

Abstract

Ocean acidification is recognized as a major anthropogenic perturbation of the modern ocean. While extensive studies have been carried out to explore the short-term physiological responses of phytoplankton to ocean acidification, little is known about their lipidomic responses after a long-term ocean acidification adaptation. Here we perform the lipidomic analysis of a marine diatom following long-term (∼400 days) selection to ocean acidification conditions. We identified a total of 476 lipid metabolites in long-term high CO (i.e., ocean acidification condition) and low CO (i.e., ambient condition) selected cells. Our results further show that long-term high CO selection triggered substantial changes in lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-term high CO selected conditions, the majority (∼80%) of phosphatidylglycerol (PG) was up-regulated. The tightly coupled regulations (positively or negatively correlated) of significantly regulated lipid metabolites suggest that the lipid remodeling is an organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since the composition and content of lipids are crucial for marine food quality, and these changes can be transferred to high trophic levels, our results highlight the importance of determining the long-term adaptation of lipids in marine producers in predicting the ecological consequences of climate change.

Keywords

References

  1. Annu Rev Food Sci Technol. 2018 Mar 25;9:345-381 [PMID: 29350557]
  2. Biochim Biophys Acta. 2009 Oct;1787(10):1189-97 [PMID: 19486881]
  3. J Phycol. 2019 Jun;55(3):521-533 [PMID: 30849184]
  4. Biochim Biophys Acta. 1996 Jul 12;1302(1):17-45 [PMID: 8695653]
  5. Mar Environ Res. 2012 Aug;79:142-51 [PMID: 22770534]
  6. Sci Total Environ. 2021 Jun 1;771:145167 [PMID: 33736151]
  7. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3830-7 [PMID: 21321195]
  8. Photosynth Res. 2010 Nov;106(1-2):103-22 [PMID: 20224940]
  9. PLoS One. 2012;7(4):e34737 [PMID: 22509351]
  10. J Phycol. 2019 Dec;55(6):1246-1257 [PMID: 31127609]
  11. Environ Technol. 2013 Jul-Aug;34(13-16):1887-94 [PMID: 24350442]
  12. Plant Physiol. 2010 Sep;154(1):187-96 [PMID: 20634393]
  13. Biochim Biophys Acta. 2007 Jun;1767(6):509-19 [PMID: 17292322]
  14. Toxicol Rep. 2014;1:435-444 [PMID: 27722094]
  15. Plant Cell Physiol. 2014 Mar;55(3):634-44 [PMID: 24449653]
  16. PLoS One. 2015 May 13;10(5):e0123945 [PMID: 25970340]
  17. Plant Physiol. 2015 Jan;167(1):118-36 [PMID: 25489020]
  18. Philos Trans R Soc Lond B Biol Sci. 2017 Sep 5;372(1728): [PMID: 28717017]
  19. Glob Chang Biol. 2017 Jan;23(1):127-137 [PMID: 27629864]
  20. Biol Pharm Bull. 2015;38(3):470-5 [PMID: 25757930]
  21. Evolution. 2013 Jul;67(7):1849-59 [PMID: 23815643]
  22. Nature. 2009 Mar 5;458(7234):69-72 [PMID: 19182781]
  23. Adv Mar Biol. 2003;46:225-340 [PMID: 14601414]
  24. Can J Microbiol. 1962 Apr;8:229-39 [PMID: 13902807]
  25. Biotechnol Bioeng. 2012 May;109(5):1146-54 [PMID: 22161571]
  26. Plant Physiol. 2008 Sep;148(1):580-92 [PMID: 18641085]
  27. Funct Plant Biol. 2014 Apr;41(5):449-459 [PMID: 32481004]
  28. Phytochemistry. 2006 Apr;67(7):696-701 [PMID: 16497342]
  29. Mar Environ Res. 2017 Apr;125:42-48 [PMID: 28126512]
  30. Biochim Biophys Acta. 2014 Apr;1837(4):470-80 [PMID: 24051056]
  31. Biochim Biophys Acta. 2003 Jul 4;1633(1):35-42 [PMID: 12842193]
  32. Photosynth Res. 2010 Nov;106(1-2):123-34 [PMID: 20524069]
  33. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  34. PLoS One. 2008 Jan 09;3(1):e1426 [PMID: 18183306]
  35. Sci Total Environ. 2019 Aug 25;680:79-90 [PMID: 31102831]
  36. Trends Plant Sci. 2007 Jun;12(6):260-6 [PMID: 17499005]
  37. Mar Environ Res. 2017 Dec;132:51-62 [PMID: 29108676]
  38. New Phytol. 2017 Apr;214(1):205-218 [PMID: 27870063]
  39. Biochim Biophys Acta. 2010 Mar;1797(3):414-24 [PMID: 20035710]
  40. Nat Commun. 2015 Oct 27;6:8714 [PMID: 26503801]
  41. BMC Bioinformatics. 2017 Mar 21;18(1):183 [PMID: 28327092]
  42. Science. 2015 Jul 3;349(6243):aac4722 [PMID: 26138982]
  43. Science. 1998 Jul 10;281(5374):237-40 [PMID: 9657713]
  44. Sci Rep. 2015 Oct 09;5:15117 [PMID: 26450399]
  45. Plant Cell. 2018 Feb;30(2):447-465 [PMID: 29437989]
  46. Prog Lipid Res. 2006 Mar;45(2):160-86 [PMID: 16492482]
  47. Ann Rev Mar Sci. 2020 Jan 3;12:181-208 [PMID: 31451085]
  48. Evolution. 2013 Jul;67(7):1869-78 [PMID: 23815645]
  49. Nature. 1997 Mar 13;386(6621):129-30 [PMID: 9062183]
  50. Plant Physiol. 1981 Aug;68(2):439-42 [PMID: 16661932]
  51. Plant Physiol Biochem. 2020 Nov;156:357-368 [PMID: 33002714]
  52. Prog Lipid Res. 2019 Apr;74:31-68 [PMID: 30703388]
  53. Mar Drugs. 2015 Jun 09;13(6):3672-709 [PMID: 26065408]

Word Cloud

Created with Highcharts 10.0.0acidificationoceanlong-termlipidadaptationmarinemetaboliteshighCOOceanresponseslipidomicselectionconditionsieconditionselectedresultschangessignificantlydiatomslipidsfoodqualityrecognizedmajoranthropogenicperturbationmodernextensivestudiescarriedexploreshort-termphysiologicalphytoplanktonlittleknownperformanalysisdiatomfollowing∼400daysidentifiedtotal476lowambientcellsshowtriggeredsubstantialdown-up-regulating3342monogalactosyldiacylglycerolMGDGdown-regulatedmajority∼80%phosphatidylglycerolPGup-regulatedtightlycoupledregulationspositivelynegativelycorrelatedregulatedsuggestremodelingorganismalstrategyongoingSincecompositioncontentcrucialcantransferredtrophiclevelshighlightimportancedeterminingproducerspredictingecologicalconsequencesclimatechangeLipidRemodelingRevealsAdaptationsMarineDiatomAcidificationlipidomics

Similar Articles

Cited By