Mass spectrometric identification of immunogenic SARS-CoV-2 epitopes and cognate TCRs.

Ke Pan, Yulun Chiu, Eric Huang, Michelle Chen, Junmei Wang, Ivy Lai, Shailbala Singh, Rebecca M Shaw, Michael J MacCoss, Cassian Yee
Author Information
  1. Ke Pan: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054. ORCID
  2. Yulun Chiu: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054.
  3. Eric Huang: Department of Genome Sciences, University of Washington, Seattle, WA 98195.
  4. Michelle Chen: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054.
  5. Junmei Wang: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054.
  6. Ivy Lai: Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77054.
  7. Shailbala Singh: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054.
  8. Rebecca M Shaw: Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77054. ORCID
  9. Michael J MacCoss: Department of Genome Sciences, University of Washington, Seattle, WA 98195.
  10. Cassian Yee: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054; cyee@mdanderson.org. ORCID

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID-19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally if not more important than humoral responses in mediating recovery and immune protection. One major challenge in developing T cell-based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities. Our studies find that, in contrast to current convention, "immunodominant" SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined empirically by directly analyzing peptides eluted from the naturally processed peptide-major histocompatibility complex (MHC) and then validating immunogenicity by determining whether such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes derived from not only structural but also nonstructural genes in regions highly conserved among SARS-CoV-2 strains, including recently recognized variants. Finally, there are no reported T cell receptor-engineered T cell technology that can redirect T cell specificity to recognize and kill SARS-CoV-2 target cells. We report here several SARS-CoV-2 epitopes defined by mass spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity, and demonstrate engineered TCR-redirected killing.

Keywords

References

  1. Cell Host Microbe. 2021 Apr 14;29(4):522-528.e2 [PMID: 33789085]
  2. Vaccine. 2020 Nov 10;38(48):7612-7628 [PMID: 33082015]
  3. Viruses. 2020 Feb 25;12(3): [PMID: 32106567]
  4. Sci Immunol. 2020 Jun 26;5(48): [PMID: 32591408]
  5. Vaccines (Basel). 2020 Aug 06;8(3): [PMID: 32781672]
  6. Emerg Infect Dis. 2021 Jan;27(1): [PMID: 33261718]
  7. N Engl J Med. 2021 May 13;384(19):1866-1868 [PMID: 33761203]
  8. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  9. Sci Immunol. 2017 Feb;2(8): [PMID: 28367538]
  10. Cell Host Microbe. 2020 Apr 8;27(4):671-680.e2 [PMID: 32183941]
  11. Viruses. 2020 Sep 09;12(9): [PMID: 32916958]
  12. BMJ. 2021 Mar 23;372:n771 [PMID: 33757984]
  13. Int J Infect Dis. 2020 Feb;91:264-266 [PMID: 31953166]
  14. Lancet. 2020 Nov 14;396(10262):1595-1606 [PMID: 33065034]
  15. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  16. Blood. 2020 Dec 17;136(25):2905-2917 [PMID: 33331927]
  17. Cell. 2021 Apr 29;184(9):2372-2383.e9 [PMID: 33743213]
  18. Sci Immunol. 2021 Mar 4;6(57): [PMID: 33664060]
  19. Hum Immunol. 2003 Feb;64(2):245-55 [PMID: 12559627]
  20. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  21. Nat Med. 2020 Aug;26(8):1200-1204 [PMID: 32555424]
  22. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  23. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  24. Sci Rep. 2020 Jul 2;10(1):10895 [PMID: 32616763]
  25. Nat Immunol. 2020 Nov;21(11):1336-1345 [PMID: 32887977]
  26. Immunity. 2020 Dec 15;53(6):1245-1257.e5 [PMID: 33326767]
  27. Cell Host Microbe. 2021 Apr 14;29(4):508-515 [PMID: 33789086]
  28. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  29. Adv Drug Deliv Rev. 2021 Apr;171:29-47 [PMID: 33465451]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. R01 CA237672/NCI NIH HHS
  3. 3R01 CA237672-02S1/NIH HHS

MeSH Term

CD8-Positive T-Lymphocytes
COVID-19
Cell Line
Epitopes
Epitopes, T-Lymphocyte
Humans
Major Histocompatibility Complex
Mass Spectrometry
Peptides
Receptors, Antigen, T-Cell
SARS-CoV-2
Spike Glycoprotein, Coronavirus

Chemicals

Epitopes
Epitopes, T-Lymphocyte
Peptides
Receptors, Antigen, T-Cell
Spike Glycoprotein, Coronavirus

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2TepitopescellelicitresponsespeptidescellsimmunogeniccandefinedmasshumoralimmuneidentificationsilicomethodsrecognizingnaturallyMHCimmunogenicityspectrometryspectrometricSevereacuterespiratorysyndromecoronavirus2infectionscellularpreventiontreatmentCOVID-19diseasecausedbecomeincreasinglyapparentequallyimportantmediatingrecoveryprotectionOnemajorchallengedevelopingcell-basedtherapiesinfectiousmalignantdiseasesmeaningfulresponseTraditionallyachievedusingsophisticatedpredictputativededucedbindingaffinitiesstudiesfindcontrastcurrentconvention"immunodominant"oftenfailpresentedpostulatedbestempiricallydirectlyanalyzingelutedprocessedpeptide-majorhistocompatibilitycomplexvalidatingdeterminingwhetherantigen-expressingUsingtandemapproachidentifiedderivedstructuralalsononstructuralgenesregionshighlyconservedamongstrainsincludingrecentlyrecognizedvariantsFinallyreportedreceptor-engineeredtechnologyredirectspecificityrecognizekilltargetreportseveralanalysisMHC-elutedprovideempiricevidencedemonstrateengineeredTCR-redirectedkillingMasscognateTCRspeptideTCR-T

Similar Articles

Cited By