Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors.

Olakunle A Jaiyesimi, Andrew C McAvoy, David N Fogg, Neha Garg
Author Information
  1. Olakunle A Jaiyesimi: School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA.
  2. Andrew C McAvoy: School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA.
  3. David N Fogg: School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA.
  4. Neha Garg: School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA. neha.garg@chemistry.gatech.edu.

Abstract

Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.

References

  1. J Bacteriol. 2009 Oct;191(19):5901-9 [PMID: 19648250]
  2. Nat Chem Biol. 2013 May;9(5):339-43 [PMID: 23542643]
  3. Nat Biotechnol. 2020 Jan;38(1):23-26 [PMID: 31894142]
  4. Microbiology (Reading). 2001 Sep;147(Pt 9):2517-2528 [PMID: 11535791]
  5. Nat Rev Microbiol. 2021 Jun;19(6):391-404 [PMID: 33526910]
  6. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12580-5 [PMID: 26392543]
  7. Eur Respir J. 2015 Oct;46(4):1033-45 [PMID: 26022954]
  8. ACS Infect Dis. 2021 Mar 12;7(3):544-551 [PMID: 33577297]
  9. Environ Microbiol Rep. 2015 Apr;7(2):180-7 [PMID: 25294803]
  10. PLoS Pathog. 2011 Sep;7(9):e1002259 [PMID: 21980286]
  11. Drug Resist Updat. 2016 Sep;28:82-90 [PMID: 27620956]
  12. Microbiologyopen. 2020 Feb;9(2):e962 [PMID: 31667921]
  13. Am J Respir Crit Care Med. 2001 Aug 1;164(3):486-93 [PMID: 11500355]
  14. Genes (Basel). 2017 Jan 19;8(1): [PMID: 28106859]
  15. Curr Opin Pulm Med. 2005 Nov;11(6):528-33 [PMID: 16217180]
  16. J Cyst Fibros. 2004 Jun;3(2):93-8 [PMID: 15463892]
  17. Future Microbiol. 2007 Apr;2(2):153-64 [PMID: 17661652]
  18. Genome Res. 2017 Apr;27(4):650-662 [PMID: 28325850]
  19. Free Radic Biol Med. 2017 Apr;105:68-78 [PMID: 27780750]
  20. J Bacteriol. 2005 Aug;187(15):5267-77 [PMID: 16030221]
  21. Nat Genet. 2011 Nov 13;43(12):1275-80 [PMID: 22081229]
  22. Biochim Biophys Acta. 1994 Sep 28;1201(1):55-60 [PMID: 7522571]
  23. PLoS Pathog. 2010 Aug 12;6(8):e1000949 [PMID: 20711357]
  24. Rapid Commun Mass Spectrom. 2007;21(10):1613-22 [PMID: 17443490]
  25. FEMS Microbiol Rev. 2017 Jan;41(1):19-33 [PMID: 27576366]
  26. Int J Mol Sci. 2018 Apr 08;19(4): [PMID: 29642500]
  27. J Antibiot (Tokyo). 1989 Oct;42(10):1526-9 [PMID: 2808141]
  28. Nat Rev Microbiol. 2019 Jun;17(6):371-382 [PMID: 30944413]
  29. Proc Natl Acad Sci U S A. 2018 May 1;115(18):4779-4784 [PMID: 29666244]
  30. J Clin Microbiol. 1996 Dec;34(12):2914-20 [PMID: 8940422]
  31. Appl Environ Microbiol. 2015 Aug 15;81(16):5290-8 [PMID: 26025901]
  32. Antimicrob Resist Infect Control. 2017 Jun 6;6:57 [PMID: 28593045]
  33. Chem Sci. 2017 Apr 1;8(4):2823-2831 [PMID: 28553520]
  34. Chest. 2002 Jan;121(1):48-54 [PMID: 11796431]
  35. J Clin Microbiol. 1986 Mar;23(3):560-2 [PMID: 2937804]
  36. J Cheminform. 2016 Feb 01;8:5 [PMID: 26839597]
  37. Microbiology (Reading). 1998 Jul;144 ( Pt 7):1737-1745 [PMID: 9695908]
  38. J Am Chem Soc. 2001 Aug 29;123(34):8434-5 [PMID: 11516308]
  39. Respir Care. 2020 Feb;65(2):233-251 [PMID: 31772069]
  40. Curr Microbiol. 2014 Sep;69(3):388-93 [PMID: 24810292]
  41. Virulence. 2017 Aug 18;8(6):782-796 [PMID: 27652671]
  42. J Nat Prod. 2019 Jul 26;82(7):2018-2037 [PMID: 31294966]
  43. Front Microbiol. 2018 Mar 06;9:383 [PMID: 29559964]
  44. Thorax. 2004 Nov;59(11):948-51 [PMID: 15516469]
  45. FEMS Microbiol Lett. 2000 Feb 15;183(2):295-9 [PMID: 10675600]
  46. J Bacteriol. 1999 Feb;181(3):748-56 [PMID: 9922236]
  47. mBio. 2020 Jan 14;11(1): [PMID: 31937646]
  48. J Infect. 2018 Sep;77(3):166-170 [PMID: 30012345]
  49. Clin Microbiol Rev. 2002 Apr;15(2):194-222 [PMID: 11932230]
  50. Front Microbiol. 2017 Aug 22;8:1592 [PMID: 28878751]
  51. Nat Rev Microbiol. 2005 Feb;3(2):144-56 [PMID: 15643431]
  52. PLoS One. 2016 Oct 5;11(10):e0163469 [PMID: 27706219]
  53. FEMS Microbiol Rev. 2016 Jan;40(1):133-59 [PMID: 25862689]
  54. Nat Methods. 2019 Apr;16(4):299-302 [PMID: 30886413]
  55. J Nat Prod. 2019 Apr 26;82(4):1024-1028 [PMID: 30793902]
  56. Eur J Biochem. 1994 Oct 15;225(2):765-71 [PMID: 7957191]
  57. Am J Respir Crit Care Med. 1999 Sep;160(3):796-801 [PMID: 10471599]
  58. Clin Microbiol Infect. 2010 Jul;16(7):821-30 [PMID: 20880411]
  59. Microbiology (Reading). 2012 Apr;158(Pt 4):1037-1044 [PMID: 22262102]
  60. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4256-60 [PMID: 6794030]
  61. J Cheminform. 2016 Nov 4;8:61 [PMID: 27867422]
  62. Front Cell Infect Microbiol. 2017 Nov 06;7:460 [PMID: 29164069]
  63. Metabolites. 2020 Nov 05;10(11): [PMID: 33167332]
  64. J Bacteriol. 2007 Dec;189(24):9057-65 [PMID: 17933889]
  65. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  66. J Nematol. 2003 Jun;35(2):212-7 [PMID: 19265997]
  67. J Bacteriol. 2011 Dec;193(23):6712-23 [PMID: 21965564]
  68. J Med Microbiol. 2010 Sep;59(Pt 9):1089-1100 [PMID: 20522626]
  69. PLoS Pathog. 2014 Jan;10(1):e1003889 [PMID: 24465209]
  70. J Vis Exp. 2012 Jun 05;(64):e3857 [PMID: 22711026]
  71. Environ Microbiol. 2015 Mar;17(3):735-50 [PMID: 24888970]
  72. Lancet. 1993 Jul 3;342(8862):15-9 [PMID: 7686239]
  73. Infect Immun. 2009 Sep;77(9):4102-10 [PMID: 19528212]
  74. Infect Immun. 2014 Nov;82(11):4729-45 [PMID: 25156735]
  75. Am J Respir Crit Care Med. 2001 Jul 1;164(1):92-6 [PMID: 11435245]
  76. Biometals. 2004 Aug;17(4):409-14 [PMID: 15259361]
  77. ACS Chem Biol. 2016 Aug 19;11(8):2124-30 [PMID: 27367535]
  78. Angew Chem Int Ed Engl. 2019 Jan 2;58(1):200-204 [PMID: 30375753]
  79. J Gen Microbiol. 1989 Jun;135(6):1479-87 [PMID: 2533244]
  80. J Heart Lung Transplant. 2010 Dec;29(12):1395-404 [PMID: 20810293]
  81. ACS Infect Dis. 2020 May 8;6(5):1154-1168 [PMID: 32212725]
  82. Future Microbiol. 2012 Dec;7(12):1373-87 [PMID: 23231487]
  83. Nat Biotechnol. 2021 Apr;39(4):462-471 [PMID: 33230292]
  84. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13738-13743 [PMID: 27856765]
  85. Virulence. 2013 Jul 1;4(5):400-9 [PMID: 23799665]
  86. BMC Infect Dis. 2008 Sep 19;8:121 [PMID: 18801206]
  87. Infect Immun. 2005 Aug;73(8):4982-92 [PMID: 16041013]
  88. Bioinformatics. 2009 Jan 15;25(2):218-24 [PMID: 19015140]
  89. PLoS Pathog. 2016 Aug 22;12(8):e1005846 [PMID: 27548479]
  90. Ann Am Thorac Soc. 2015 Jan;12(1):70-8 [PMID: 25474359]
  91. Nat Methods. 2020 Sep;17(9):905-908 [PMID: 32839597]
  92. Appl Environ Microbiol. 2003 Apr;69(4):2023-31 [PMID: 12676678]
  93. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4110-5 [PMID: 25775563]
  94. J Phys Chem B. 2015 Apr 30;119(17):5487-95 [PMID: 25804677]
  95. Sci Rep. 2019 Jul 29;9(1):10941 [PMID: 31358890]
  96. BMC Microbiol. 2014 Feb 21;14:46 [PMID: 24555804]
  97. Lancet. 1990 Nov 3;336(8723):1094-6 [PMID: 1977981]
  98. J Med Microbiol. 2005 Jul;54(Pt 7):667-676 [PMID: 15947432]
  99. Infect Immun. 1998 Feb;66(2):874-7 [PMID: 9453660]
  100. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  101. Nat Commun. 2018 Mar 30;9(1):1297 [PMID: 29602945]
  102. Cell Microbiol. 2010 Nov;12(11):1666-79 [PMID: 20597908]
  103. J Bacteriol. 2009 Apr;191(8):2447-60 [PMID: 19201791]
  104. Org Lett. 2018 Aug 17;20(16):4791-4795 [PMID: 30073838]
  105. J Ind Microbiol Biotechnol. 2014 Feb;41(2):275-84 [PMID: 24212473]
  106. Mol Microbiol. 2013 Jan;87(1):94-111 [PMID: 23136852]
  107. Infect Immun. 2007 Nov;75(11):5313-24 [PMID: 17724070]
  108. J Mol Biol. 2019 Nov 22;431(23):4645-4655 [PMID: 31260693]
  109. J Proteome Res. 2012 Feb 3;11(2):776-95 [PMID: 22054071]
  110. BMC Genomics. 2009 Sep 17;10:441 [PMID: 19761612]
  111. Rapid Commun Mass Spectrom. 2016 Oct 15;30(19):2087-98 [PMID: 27472174]
  112. J Proteome Res. 2019 May 3;18(5):2331-2336 [PMID: 30994357]
  113. Int J Mol Sci. 2019 Apr 13;20(8): [PMID: 31013936]
  114. ISME J. 2015 Mar 17;9(4):1024-38 [PMID: 25514533]
  115. J Bacteriol. 2007 Nov;189(22):8079-87 [PMID: 17873029]
  116. Sci Rep. 2021 Mar 11;11(1):5785 [PMID: 33707636]
  117. Curr Protoc Bioinformatics. 2019 Dec;68(1):e86 [PMID: 31756036]
  118. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  119. Nature. 2017 Nov 15;551(7680):313-320 [PMID: 29144467]
  120. J Bacteriol. 2009 Jun;191(11):3517-25 [PMID: 19329644]
  121. Front Bioeng Biotechnol. 2016 Jan 19;3:208 [PMID: 26904538]

MeSH Term

Anti-Bacterial Agents
Bacterial Proteins
Burkholderia Infections
Burkholderia cenocepacia
Chromatography, High Pressure Liquid
Culture Media
Cystic Fibrosis
Humans
Lipids
Metabolome
Metabolomics
Microbial Sensitivity Tests
Quorum Sensing
Sputum
Trimethoprim
Virulence Factors

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Culture Media
Lipids
Virulence Factors
Trimethoprim

Word Cloud

Created with Highcharts 10.0.0cenocepaciaBstrainsproductionSCFM2BurkholderiaCFmediumLBpresencetrimethoprimmetabolitesincludingcysticfibrosisvariousvirulencefactorssyntheticsputumantibioticmetabolomicsapproachidentifyproducedcomparedsiderophoresquorumsensingsecondarymechanismsInfectionsleadlife-threateningdiseaseimmunocompromisedindividualslivinggeneticvariationreportedremainsunclearchemicalenvironmentlunginfluencessmallmoleculecomparemetabolomesthreeclinicalroutinelaboratoryabsenceUsingmassspectrometry-baseduntargetedseveralcompoundclassesdifferentiallymediaantimicrobialssignalslipidsFurthermoredescribespecificinducedHereinC13-acyl-homoserinelactonesignalpreviouslyknownwellpyochelin-typeexclusivelydetectedgrowthcomparativedescribedstudyprovidesinsightenvironment-dependentsuggestsfutureworkpersonalizedstrain-specificregulatoryinvolvedInvestigationswhetherantibioticsdifferentof actioninducesimilarmetabolicalterationswillinformdevelopmentcombinationtreatmentsaimedeffectiveclearancespppathogensMetabolomicprofilingrevealsnutrientenvironment-specific

Similar Articles

Cited By