The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice.

Jihong Hu, Liyu Huang, Guanglong Chen, Hui Liu, Yesheng Zhang, Ru Zhang, Shilai Zhang, Jintao Liu, Qingyi Hu, Fengyi Hu, Wen Wang, Yi Ding
Author Information
  1. Jihong Hu: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China. ORCID
  2. Liyu Huang: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
  3. Guanglong Chen: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
  4. Hui Liu: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
  5. Yesheng Zhang: State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
  6. Ru Zhang: School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
  7. Shilai Zhang: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
  8. Jintao Liu: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
  9. Qingyi Hu: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
  10. Fengyi Hu: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China. hfengyi@ynu.edu.cn.
  11. Wen Wang: State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. wwang@mail.kiz.ac.cn.
  12. Yi Ding: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China. yiding@whu.edu.cn. ORCID

Abstract

Grain weight and grain number, the two important yield traits, are mainly determined by grain size and panicle architecture in rice. Herein, we report the identification and functional analysis of OsSPL4 in panicle and grain development of rice. Using CRISPR/Cas9 system, two elite alleles of OsSPL4 were obtained, which exhibited an increasing number of grains per panicle and grain size, resulting in increase of rice yield. Cytological analysis showed that OsSPL4 could regulate spikelet development by promoting cell division. The results of RNA-seq and qRT-PCR validations also demonstrated that several MADS-box and cell-cycle genes were up-regulated in the mutation lines. Co-expression network revealed that many yield-related genes were involved in the regulation network of OsSPL4. In addition, OsSPL4 could be cleaved by the osa-miR156 in vivo, and the OsmiR156-OsSPL4 module might regulate the grain size in rice. Further analysis indicated that the large-grain allele of OsSPL4 in indica rice might introgress from aus varieties under artificial selection. Taken together, our findings suggested that OsSPL4 could be as a key regulator of grain size by acting on cell division control and provided a strategy for panicle architecture and grain size modification for yield improvement in rice.

Keywords

References

  1. Nat Genet. 2011 Oct 23;43(12):1266-9 [PMID: 22019783]
  2. Sci Rep. 2018 May 31;8(1):8498 [PMID: 29855560]
  3. Genetics. 2009 Sep;183(1):315-24 [PMID: 19546322]
  4. Nat Commun. 2013;4:2200 [PMID: 23884108]
  5. Annu Rev Genet. 2014;48:99-118 [PMID: 25149369]
  6. Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11102-7 [PMID: 26283354]
  7. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21534-9 [PMID: 23236132]
  8. Nat Plants. 2017 Apr 10;3:17043 [PMID: 28394310]
  9. Plant Methods. 2007 Oct 12;3:12 [PMID: 17931426]
  10. Mol Plant. 2018 May 7;11(5):750-753 [PMID: 29567450]
  11. J Exp Bot. 2018 Oct 12;69(21):5117-5130 [PMID: 30053063]
  12. Mol Plant. 2019 Aug 5;12(8):1114-1122 [PMID: 31059826]
  13. Mol Plant. 2015 Oct 5;8(10):1455-65 [PMID: 26187814]
  14. Nat Plants. 2015 Dec 21;2:15196 [PMID: 27250748]
  15. PLoS One. 2013;8(3):e57863 [PMID: 23469249]
  16. Trends Biotechnol. 2019 Oct;37(10):1121-1142 [PMID: 30995964]
  17. Gene. 2008 Jul 15;418(1-2):1-8 [PMID: 18495384]
  18. Bioinformatics. 2015 Apr 15;31(8):1296-7 [PMID: 25504850]
  19. Plant Mol Biol. 2019 Jul;100(4-5):467-479 [PMID: 31004275]
  20. Plant J. 2011 Sep;67(5):907-16 [PMID: 21585570]
  21. Nat Genet. 2007 May;39(5):623-30 [PMID: 17417637]
  22. Nat Genet. 2009 Apr;41(4):494-7 [PMID: 19305410]
  23. Nat Genet. 2013 Jun;45(6):707-11 [PMID: 23583977]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Genomics Proteomics Bioinformatics. 2020 Jun;18(3):256-270 [PMID: 32736037]
  26. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3646-51 [PMID: 18305171]
  27. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  28. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  29. Plant Biotechnol J. 2016 Nov;14(11):2134-2146 [PMID: 27107174]
  30. Nat Biotechnol. 2013 Sep;31(9):848-52 [PMID: 23873084]
  31. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19579-84 [PMID: 20974950]
  32. Nat Plants. 2017 Nov;3(11):885-893 [PMID: 29085070]
  33. J Integr Plant Biol. 2012 May;54(5):300-11 [PMID: 22463712]
  34. J Genet Genomics. 2019 Jan 20;46(1):41-51 [PMID: 30737149]
  35. Plant J. 1994 Aug;6(2):271-82 [PMID: 7920717]
  36. Nucleic Acids Res. 2015 Jan;43(Database issue):D1018-22 [PMID: 25274737]
  37. J Integr Plant Biol. 2016 Oct;58(10):836-847 [PMID: 26936408]
  38. aBIOTECH. 2020 Apr 6;1(2):106-118 [PMID: 36304716]
  39. FEBS Lett. 2006 Apr 3;580(8):2109-16 [PMID: 16554053]
  40. Plant Physiol. 2006 Sep;142(1):280-93 [PMID: 16861571]
  41. Plant Cell Physiol. 2009 Dec;50(12):2133-45 [PMID: 19880401]
  42. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  43. Nat Commun. 2020 Feb 5;11(1):725 [PMID: 32024833]
  44. Plant Biotechnol J. 2020 Apr;18(4):916-928 [PMID: 31529568]
  45. Plant Cell. 2019 Jun;31(6):1257-1275 [PMID: 30940685]
  46. Nat Genet. 2015 Aug;47(8):944-8 [PMID: 26147619]
  47. J Integr Plant Biol. 2013 Oct;55(10):938-49 [PMID: 23650998]
  48. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  49. Plant Cell. 2012 Feb;24(2):415-27 [PMID: 22345490]
  50. Cell Res. 2008 Dec;18(12):1199-209 [PMID: 19015668]
  51. Plant Biotechnol J. 2019 Mar;17(3):650-664 [PMID: 30160362]
  52. Mol Plant. 2018 May 7;11(5):736-749 [PMID: 29567449]
  53. Front Plant Sci. 2017 Oct 05;8:1730 [PMID: 29051769]
  54. Nat Genet. 2012 Jun 24;44(8):950-4 [PMID: 22729225]
  55. Cell Res. 2012 Dec;22(12):1666-80 [PMID: 23147796]
  56. Plant Cell. 2013 Oct;25(10):3743-59 [PMID: 24170127]
  57. Nat Plants. 2015 Dec 21;2:15195 [PMID: 27250747]
  58. Plant J. 2020 Dec;104(5):1301-1314 [PMID: 32996244]
  59. Curr Opin Plant Biol. 2016 Oct;33:23-32 [PMID: 27294659]
  60. J Mol Biol. 2005 Sep 23;352(3):585-96 [PMID: 16095614]
  61. Nat Genet. 2010 Jun;42(6):545-9 [PMID: 20495564]
  62. Annu Rev Plant Biol. 2019 Apr 29;70:435-463 [PMID: 30795704]
  63. Nat Genet. 2010 Jun;42(6):541-4 [PMID: 20495565]
  64. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  65. Trends Plant Sci. 2017 Aug;22(8):643-646 [PMID: 28647102]
  66. Mol Plant. 2018 May 7;11(5):754-756 [PMID: 29567448]
  67. Nucleic Acids Res. 2015 Jul 1;43(W1):W122-7 [PMID: 25813048]
  68. Nat Plants. 2018 May;4(5):280-288 [PMID: 29632394]
  69. Front Plant Sci. 2019 May 08;10:565 [PMID: 31139200]
  70. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  71. Nat Genet. 2016 Apr;48(4):447-56 [PMID: 26950093]

Grants

  1. 2013CB835200/National Key Basic Research Program
  2. 31471464/National Natural Science Foundation of China
  3. 31901426/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0OsSPL4grainGrainsizericeyieldpanicleanalysisweightnumbertwoarchitecturedevelopmentregulatecelldivisiongenesnetworkmightRiceimportanttraitsmainlydeterminedHereinreportidentificationfunctionalUsingCRISPR/Cas9systemeliteallelesobtainedexhibitedincreasinggrainsperresultingincreaseCytologicalshowedspikeletpromotingresultsRNA-seqqRT-PCRvalidationsalsodemonstratedseveralMADS-boxcell-cycleup-regulatedmutationlinesCo-expressionrevealedmanyyield-relatedinvolvedregulationadditioncleavedosa-miR156vivoOsmiR156-OsSPL4moduleindicatedlarge-grainalleleindicaintrogressausvarietiesartificialselectionTakentogetherfindingssuggestedthat OsSPL4keyregulatoractingcontrolprovidedstrategymodificationimprovementEliteAllelesRegulateSizeIncreaseYieldPaniclebranching

Similar Articles

Cited By