The genome of New Zealand trevally (Carangidae: Pseudocaranx georgianus) uncovers a XY sex determination locus.

Andrew Catanach, Mike Ruigrok, Deepa Bowatte, Marcus Davy, Roy Storey, Noémie Valenza-Troubat, Elena López-Girona, Elena Hilario, Matthew J Wylie, David Chagné, Maren Wellenreuther
Author Information
  1. Andrew Catanach: The New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand.
  2. Mike Ruigrok: Department of Bioinformatics, University of Applied Sciences Leiden, Leiden, The Netherlands.
  3. Deepa Bowatte: The New Zealand Institute for Plant & Food Research Ltd, Palmerston North, New Zealand.
  4. Marcus Davy: The New Zealand Institute for Plant & Food Research Ltd, Te Puke, New Zealand.
  5. Roy Storey: The New Zealand Institute for Plant & Food Research Ltd, Te Puke, New Zealand.
  6. Noémie Valenza-Troubat: The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.
  7. Elena López-Girona: The New Zealand Institute for Plant & Food Research Ltd, Palmerston North, New Zealand.
  8. Elena Hilario: The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.
  9. Matthew J Wylie: The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.
  10. David Chagné: The New Zealand Institute for Plant & Food Research Ltd, Palmerston North, New Zealand.
  11. Maren Wellenreuther: The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand. Maren.Wellenreuther@plantandfood.co.nz.

Abstract

BACKGROUND: The genetic control of sex determination in teleost species is poorly understood. This is partly because of the diversity of mechanisms that determine sex in this large group of vertebrates, including constitutive genes linked to sex chromosomes, polygenic constitutive mechanisms, environmental factors, hermaphroditism, and unisexuality. Here we use a de novo genome assembly of New Zealand silver trevally (Pseudocaranx georgianus) together with sex-specific whole genome sequencing data to detect sexually divergent genomic regions, identify candidate genes and develop molecular makers.
RESULTS: The de novo assembly of an unsexed trevally (Trevally_v1) resulted in a final assembly of 579.4 Mb in length, with a N50 of 25.2 Mb. Of the assembled scaffolds, 24 were of chromosome scale, ranging from 11 to 31 Mb in length. A total of 28,416 genes were annotated after 12.8 % of the assembly was masked with repetitive elements. Whole genome re-sequencing of 13 wild sexed trevally (seven males and six females) identified two sexually divergent regions located on two scaffolds, including a 6 kb region at the proximal end of chromosome 21. Blast analyses revealed similarity between one region and the aromatase genes cyp19 (a1a/b) (E-value < 1.00E-25, identity > 78.8 %). Males contained higher numbers of heterozygous variants in both regions, while females showed regions of very low read-depth, indicative of male-specificity of this genomic region. Molecular markers were developed and subsequently tested on 96 histologically-sexed fish (42 males and 54 females). Three markers amplified in absolute correspondence with sex (positive in males, negative in females).
CONCLUSIONS: The higher number of heterozygous variants in males combined with the absence of these regions in females support a XY sex-determination model, indicating that the trevally_v1 genome assembly was developed from a male specimen. This sex system contrasts with the ZW sex-determination model documented in closely related carangid species. Our results indicate a sex-determining function of a cyp19a1a-like gene, suggesting the molecular pathway of sex determination is somewhat conserved in this family. The genomic resources developed here will facilitate future comparative work, and enable improved insights into the varied sex determination pathways in teleosts. The sex marker developed in this study will be a valuable resource for aquaculture selective breeding programmes, and for determining sex ratios in wild populations.

Keywords

References

  1. Gen Comp Endocrinol. 2020 May 15;291:113395 [PMID: 31981691]
  2. Mol Biol Evol. 2013 Oct;30(10):2268-85 [PMID: 23883521]
  3. Nature. 2002 May 30;417(6888):559-63 [PMID: 12037570]
  4. Trends Ecol Evol. 2017 Sep;32(9):665-680 [PMID: 28818341]
  5. Heredity (Edinb). 2005 Mar;94(3):280-94 [PMID: 15674378]
  6. Fish Physiol Biochem. 2005 Apr;31(2-3):215-26 [PMID: 20035461]
  7. Genetics. 2014 Mar;196(3):579-91 [PMID: 24653206]
  8. Mol Ecol. 2019 Mar;28(6):1210-1223 [PMID: 30770610]
  9. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  10. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W597-600 [PMID: 23671338]
  11. Evol Appl. 2021 Jul 30;15(4):591-602 [PMID: 35505891]
  12. J Biol Chem. 2010 Jun 25;285(26):20109-16 [PMID: 20427287]
  13. G3 (Bethesda). 2017 Aug 7;7(8):2489-2495 [PMID: 28611256]
  14. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  15. Bioessays. 1995 Jan;17(1):71-7 [PMID: 7702596]
  16. BMC Genomics. 2018 Jan 8;19(1):31 [PMID: 29310588]
  17. Nat Commun. 2022 May 30;13(1):3029 [PMID: 35637181]
  18. G3 (Bethesda). 2022 Mar 4;12(3): [PMID: 35100394]
  19. Mol Ecol. 2019 Mar;28(6):1203-1209 [PMID: 30834648]
  20. J Exp Bot. 2012 Jan;63(1):131-49 [PMID: 21963613]
  21. Gen Comp Endocrinol. 2006 Jul;147(3):323-8 [PMID: 16563393]
  22. Zebrafish. 2016 Feb;13(1):45-53 [PMID: 26716977]
  23. Biol Reprod. 2008 Oct;79(4):738-47 [PMID: 18614701]
  24. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  25. Biochem Biophys Res Commun. 2006 Jun 30;345(2):894-903 [PMID: 16707107]
  26. Mol Ecol. 2016 May;25(10):2130-43 [PMID: 26923504]
  27. Dev Dyn. 2013 Apr;242(4):360-70 [PMID: 23335256]
  28. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  29. Bioinformatics. 2014 Oct;30(19):2811-2 [PMID: 24930139]
  30. Curr Biol. 2019 Jun 3;29(11):1901-1909.e8 [PMID: 31130458]
  31. Curr Top Dev Biol. 2019;134:49-69 [PMID: 30999981]
  32. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  33. Mol Reprod Dev. 2001 Aug;59(4):359-70 [PMID: 11468772]
  34. Trends Ecol Evol. 2020 Jul;35(7):561-572 [PMID: 32521241]
  35. Sci Data. 2019 Oct 22;6(1):216 [PMID: 31641137]
  36. PLoS One. 2011;6(8):e23501 [PMID: 21876754]
  37. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7986-91 [PMID: 10393934]
  38. Genetics. 2012 May;191(1):163-70 [PMID: 22367037]
  39. Nucleic Acids Res. 2007 Jan;35(Database issue):D26-31 [PMID: 17148475]
  40. Biol Reprod. 2008 Dec;79(6):1111-20 [PMID: 18667752]
  41. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  42. Mol Reprod Dev. 1999 Oct;54(2):154-62 [PMID: 10471475]
  43. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11778-83 [PMID: 12193652]
  44. Mol Ecol Resour. 2017 Jan;17(1):44-53 [PMID: 27401132]
  45. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  46. Genome Res. 2016 Mar;26(3):342-50 [PMID: 26848124]
  47. Nucleic Acids Res. 2015 Sep 18;43(16):7762-8 [PMID: 26250111]
  48. Sex Dev. 2009;3(2-3):60-7 [PMID: 19684451]

Grants

  1. C11X1603/Ministry of Business, Innovation and Employment
  2. C11X1603/Ministry of Business, Innovation and Employment
  3. C11X1603/Ministry of Business, Innovation and Employment
  4. C11X1603/Ministry of Business, Innovation and Employment
  5. C11X1603/Ministry of Business, Innovation and Employment
  6. C11X1603/Ministry of Business, Innovation and Employment
  7. C11X1603/Ministry of Business, Innovation and Employment
  8. C11X1603/Ministry of Business, Innovation and Employment
  9. C11X1603/Ministry of Business, Innovation and Employment

MeSH Term

Animals
Female
Fishes
Genome
Genomics
Male
New Zealand
Sex Chromosomes

Word Cloud

Created with Highcharts 10.0.0sexassemblydeterminationgenomeregionsfemalesgenestrevallymalesdevelopedPseudocaranxgeorgianusgenomicregionmarkersspeciesmechanismsincludingconstitutivedenovoNewZealandsexuallydivergentmolecularlengthscaffoldschromosome8 %wildtwoaromatasehigherheterozygousvariantsMolecularXYsex-determinationmodelsystemwillSexBACKGROUND:geneticcontrolteleostpoorlyunderstoodpartlydiversitydeterminelargegroupvertebrateslinkedchromosomespolygenicenvironmentalfactorshermaphroditismunisexualityusesilvertogethersex-specificwholesequencingdatadetectidentifycandidatedevelopmakersRESULTS:unsexedTrevally_v1resultedfinal5794 MbN50252 Mbassembled24scaleranging1131 Mbtotal28416annotated12maskedrepetitiveelementsWholere-sequencing13sexedsevensixidentifiedlocated6 kbproximalend21Blastanalysesrevealedsimilarityonecyp19a1a/bE-value<100E-25identity>78Malescontainednumbersshowedlowread-depthindicativemale-specificitysubsequentlytested96histologically-sexedfish4254ThreeamplifiedabsolutecorrespondencepositivenegativeCONCLUSIONS:numbercombinedabsencesupportindicatingtrevally_v1malespecimencontrastsZWdocumentedcloselyrelatedcarangidresultsindicatesex-determiningfunctioncyp19a1a-likegenesuggestingpathwaysomewhatconservedfamilyresourcesfacilitatefuturecomparativeworkenableimprovedinsightsvariedpathwaysteleostsmarkerstudyvaluableresourceaquacultureselectivebreedingprogrammesdeterminingratiospopulationsCarangidae:uncoverslocusAquacultureAromatasecyp19a1aCarangidaeCytochromeP450GenomicsTeleostcyp19a1b

Similar Articles

Cited By