CD146 as a promising therapeutic target for retinal and choroidal neovascularization diseases.

Bai Xue, Ping Wang, Wenzhen Yu, Jing Feng, Jie Li, Rulian Zhao, Zhenglin Yang, Xiyun Yan, Hongxia Duan
Author Information
  1. Bai Xue: Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
  2. Ping Wang: Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  3. Wenzhen Yu: Department of Ophthalmology, People's Hospital, Peking University, Beijing, 100044, China.
  4. Jing Feng: Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  5. Jie Li: Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
  6. Rulian Zhao: Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
  7. Zhenglin Yang: Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. zliny@yahoo.com.
  8. Xiyun Yan: Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. yanxy@ibp.ac.cn.
  9. Hongxia Duan: Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. cherryshoen@aliyun.com.

Abstract

Blood vessel dysfunction causes several retinal diseases, including diabetic retinopathy, familial exudative vitreoretinopathy, macular degeneration and choroidal neovascularization in pathological myopia. Vascular endothelial growth factor (VEGF)-neutralizing proteins provide benefits in most of those diseases, yet unsolved haemorrhage and frequent intraocular injections still bothered patients. Here, we identified endothelial CD146 as a new target for retinal diseases. CD146 expression was activated in two ocular pathological angiogenesis models, a laser-induced choroid neovascularization model and an oxygen-induced retinopathy model. The absence of CD146 impaired hypoxia-induced cell migration and angiogenesis both in cell lines and animal model. Preventive or therapeutic treatment with anti-CD146 antibody AA98 significantly inhibited hypoxia-induced aberrant retinal angiogenesis in two retinal disease models. Mechanistically, under hypoxia condition, CD146 was involved in the activation of NFκB, Erk and Akt signalling pathways, which are partially independent of VEGF. Consistently, anti-CD146 therapy combined with anti-VEGF therapy showed enhanced impairment effect of hypoxia-induced angiogenesis in vitro and in vivo. Given the critical role of abnormal angiogenesis in retinal and choroidal diseases, our results provide novel insights into combinatorial therapy for neovascular fundus diseases.

Keywords

References

Bautch, V.L. (2012). VEGF-directed blood vessel patterning: from cells to organism. Cold Spring Harb Perspect Med 2, a006452. [PMID: 22951440]
Bu, P., Gao, L., Zhuang, J., Feng, J., Yang, D., and Yan, X. (2006). Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-κB activation. Mol Cancer Ther 5, 2872–2878. [PMID: 17121934]
Cascone, T., Herynk, M.H., Xu, L., Du, Z., Kadara, H., Nilsson, M.B., Oborn, C.J., Park, Y.Y., Erez, B., Jacoby, J.J., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121, 1313–1328. [PMID: 21436589]
Chan-Ling, T., Gole, G.A., Quinn, G.E., Adamson, S.J., and Darlow, B.A. (2018). Pathophysiology, screening and treatment of ROP: a multi-disciplinary perspective. Prog Retinal Eye Res 62, 77–119. [DOI: 10.1016/j.preteyeres.2017.09.002]
Chen, J., Luo, Y., Hui, H., Cai, T., Huang, H., Yang, F., Feng, J., Zhang, J., and Yan, X. (2017). CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci USA 114, E7622–E7631. [PMID: 28827364]
Chen, X., Yan, H., Liu, D., Xu, Q., Duan, H., Feng, J., Yan, X., and Xie, C. (2021). Structure basis for AA98 inhibition on the activation of endothelial cells mediated by CD146. iScience 24, 102417. [PMID: 33997697]
Colomb, F., Wang, W., Simpson, D., Zafar, M., Beynon, R., Rhodes, J.M., and Yu, L.G. (2017). Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells. J Biol Chem 292, 8381–8389. [PMID: 28364041]
Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Stahl, A., Willett, K.L., and Smith, L.E.H. (2009). Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4, 1565–1573. [PMID: 19816419]
Duan, H., Xing, S., Luo, Y., Feng, L., Gramaglia, I., Zhang, Y., Lu, D., Zeng, Q., Fan, K., Feng, J., et al. (2013). Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS. Sci Rep 3, 1687. [PMID: 23595028]
Duan, H., Zhao, S., Xiang, J., Ju, C., Chen, X., Gramaglia, I., and Yan, X. (2021). Targeting the CD146/Galectin-9 axis protects the integrity of the blood-brain barrier in experimental cerebral malaria. Cell Mol Immunol 18, 2443–2454. [PMID: 33203936]
Flanagan, K., Fitzgerald, K., Baker, J., Regnstrom, K., Gardai, S., Bard, F., Mocci, S., Seto, P., You, M., Larochelle, C., et al. (2012). Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 7, e40443. [PMID: 22792325]
Flaxman, S.R., Bourne, R.R.A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., et al. (2017). Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5, e1221–e1234. [PMID: 29032195]
Halt, K.J., Pärssinen, H.E., Junttila, S.M., Saarela, U., Sims-Lucas, S., Koivunen, P., Myllyharju, J., Quaggin, S., Skovorodkin, I.N., and Vainio, S.J. (2016). CD146 cells are essential for kidney vasculature development. Kidney Int 90, 311–324. [PMID: 27165833]
Higuchi, T., Fujiwara, H., Egawa, H., Sato, Y., Yoshioka, S., Tatsumi, K., Itoh, K., Maeda, M., Fujita, J., and Fujii, S. (2003). Cyclic AMP enhances the expression of an extravillous trophoblast marker, melanoma cell adhesion molecule, in choriocarcinoma cell JEG3 and human chorionic villous explant cultures. Mol Hum Reprod 9, 359–366. [PMID: 12771237]
Hiroi, S., Taira, E., Ogawa, K., and Tsukamoto, Y. (2005). Neurite extension of DRG neurons by gicerin expression is enhanced by nerve growth factor. Int J Mol Med 16, 1009–1014. [PMID: 16273279]
Holz, F.G., Schmitz-Valckenberg, S., and Fleckenstein, M. (2014). Recent developments in the treatment of age-related macular degeneration. J Clin Invest 124, 1430–1438. [PMID: 24691477]
Ishikawa, T., Wondimu, Z., Oikawa, Y., Gentilcore, G., Kiessling, R., Egyhazi Brage, S., Hansson, J., and Patarroyo, M. (2014). Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol 38, 69–83. [PMID: 24951930]
Jiang, T., Zhuang, J., Duan, H., Luo, Y., Zeng, Q., Fan, K., Yan, H., Lu, D., Ye, Z., Hao, J., et al. (2012). CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood 120, 2330–2339. [PMID: 22718841]
Jouve, N., Despoix, N., Espeli, M., Gauthier, L., Cypowyj, S., Fallague, K., Schiff, C., Dignat-George, F., Vély, F., and Leroyer, A.S. (2013). The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells. J Biol Chem 288, 2571–2579. [PMID: 23223580]
Kang, Y., Wang, F., Feng, J., Yang, D., Yang, X., and Yan, X. (2006). Knockdown of CD146 reduces the migration and proliferation of human endothelial cells. Cell Res 16, 313–318. [PMID: 16541130]
Kim, S.H., Kim, H., Ku, H.J., Park, J.H., Cha, H., Lee, S., Lee, J.H., and Park, J.W. (2016). Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: implications for age-related macular degeneration. Redox Biol 10, 211–220. [PMID: 27810736]
Lambert, V., Lecomte, J., Hansen, S., Blacher, S., Gonzalez, M.L.A., Struman, I., Sounni, N.E., Rozet, E., de Tullio, P., Foidart, J.M., et al. (2013). Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 8, 2197–2211. [PMID: 24136346]
Luo, Y., Duan, H., Qian, Y., Feng, L., Wu, Z., Wang, F., Feng, J., Yang, D., Qin, Z., and Yan, X. (2017). Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res 27, 352–372. [PMID: 28084332]
Luo, Y., Teng, X., Zhang, L., Chen, J., Liu, Z., Chen, X., Zhao, S., Yang, S., Feng, J., and Yan, X. (2019). CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat Commun 10, 3551. [PMID: 31391533]
Mangahas, C.R., dela Cruz, G.V., Schneider, R.J., and Jamal, S. (2004). Endothelin-1 upregulates MCAM in melanocytes. J Invest Dermatol 123, 1135–1139. [PMID: 15610525]
Mettu, P.S., Allingham, M.J., and Cousins, S.W. (2021). Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retinal Eye Res 82, 100906. [DOI: 10.1016/j.preteyeres.2020.100906]
Neidhart, M., Wehrli, R., Bruhlmann, P., Michel, B.A., Gay, R.E., and Gay, S. (1999). Synovial fluid CD146 (MUC18), a marker for synovial membrane angiogenesis in rheumatoid arthritis. Arthritis Rheumatism 42, 622–630. [PMID: 10211875]
Prager, G.W., Poettler, M., Unseld, M., and Zielinski, C.C. (2012). Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res 1, 14–25. [PMID: 25806151]
Rivera, J.C., Holm, M., Austeng, D., Morken, T.S., Zhou, T.E., Beaudry-Richard, A., Sierra, E.M., Dammann, O., and Chemtob, S. (2017). Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflamm 14, 165. [DOI: 10.1186/s12974-017-0943-1]
Ruma, I.M.W., Putranto, E.W., Kondo, E., Murata, H., Watanabe, M., Huang, P., Kinoshita, R., Futami, J., Inoue, Y., Yamauchi, A., et al. (2016). MCAM, as a novel receptor for S100A8/A9, mediates progression of malignant melanoma through prominent activation of NF-κB and ROS formation upon ligand binding. Clin Exp Metastasis 33, 609–627. [PMID: 27151304]
Schön, M., Kähne, T., Gollnick, H., and Schön, M.P. (2005). Expression of gp130 in tumors and inflammatory disorders of the skin: formal proof of its identity as CD146 (MUC18, Mel-CAM). J Invest Dermatol 125, 353–363. [PMID: 16098047]
Scortegagna, M., Cataisson, C., Martin, R.J., Hicklin, D.J., Schreiber, R.D., Yuspa, S.H., and Arbeit, J.M. (2008). HIF-1α regulates epithelial inflammation by cell autonomous NFκB activation and paracrine stromal remodeling. Blood 111, 3343–3354. [PMID: 18199827]
Shao, R., Hamel, K., Petersen, L., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2009). YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28, 4456–4468. [PMID: 19767768]
Simon, G.C., Martin, R.J., Smith, S., Thaikoottathil, J., Bowler, R.P., Barenkamp, S.J., and Chu, H.W. (2011). Up-regulation of MUC18 in airway epithelial cells by IL-13. Am J Respir Cell Mol Biol 44, 606–613. [PMID: 21239604]
St Croix, B. (2015). CD146: the unveiling of a pro-angiogenic netrin receptor. Cell Res 25, 533–534. [PMID: 25849249]
Tsuchiya, S., Tsukamoto, Y., Taira, E., and LaMarre, J. (2007). Involvement of transforming growth factor-beta in the expression of gicerin, a cell adhesion molecule, in the regeneration of hepatocytes. Int J Mol Med 19, 381–386. [PMID: 17273784]
Tu, T., Zhang, C., Yan, H., Luo, Y., Kong, R., Wen, P., Ye, Z., Chen, J., Feng, J., Liu, F., et al. (2015). CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 25, 275–287. [PMID: 25656845]
Tugues, S., Koch, S., Gualandi, L., Li, X., and Claesson-Welsh, L. (2011). Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 32, 88–111. [PMID: 21565214]
Vujosevic, S., Aldington, S.J., Silva, P., Hernández, C., Scanlon, P., Peto, T., and Simó, R. (2020). Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol 8, 337–347. [PMID: 32113513]
Wang, N., Fan, Y., Ni, P., Wang, F., Gao, X., Xue, Q., and Tang, L. (2008). High glucose effect on the role of CD146 in human proximal tubular epithelial cells in vitro. J Nephrol 21, 931–940. [PMID: 19034879]
Wang, Y., Zheng, Y., and Li, W. (2021). Compression loading of osteoclasts attenuated microRNA-146a-5p expression, which promotes angiogenesis by targeting adiponectin. Sci China Life Sci, doi: https://doi.org/10.1007/s11427-020-1869-7 .
Wang, Z., Xu, Q., Zhang, N., Du, X., Xu, G., and Yan, X. (2020). CD146, from a melanoma cell adhesion molecule to a signaling receptor. Sig Transduct Target Ther 5, 148. [DOI: 10.1038/s41392-020-00259-8]
Wang, Z., and Yan, X. (2013). CD146, a multi-functional molecule beyond adhesion. Cancer Lett 330, 150–162. [PMID: 23266426]
Witmer, A. (2003). Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retinal Eye Res 22, 1–29. [DOI: 10.1016/S1350-9462(02)00043-5]
Wong, C. W., Yanagi, Y., Lee, W. K., Ogura, Y., Yeo, I., Wong, T.Y., and Cheung, C.M.G. (2016). Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retinal Eye Res 53, 107–139. [DOI: 10.1016/j.preteyeres.2016.04.002]
Wu, Z., Liu, J., Chen, G., Du, J., Cai, H., Chen, X., Ye, G., Luo, Y., Luo, Y., Zhang, L., et al. (2021). CD146 is a novel ANGPTL2 receptor that promotes obesity by manipulating lipid metabolism and energy expenditure. Adv Sci 8, 2004032. [DOI: 10.1002/advs.202004032]
Xing, S., Luo, Y., Liu, Z., Bu, P., Duan, H., Liu, D., Wang, P., Yang, J., Song, L., Feng, J., et al. (2014). Targeting endothelial CD146 attenuates colitis and prevents colitis-associated carcinogenesis. Am J Pathol 184, 1604–1616. [PMID: 24767106]
Yan, H., Zhang, C., Wang, Z., Tu, T., Duan, H., Luo, Y., Feng, J., Liu, F., and Yan, X. (2017). CD146 is required for VEGF-C-induced lymphatic sprouting during lymphangiogenesis. Sci Rep 7, 7442. [PMID: 28785085]
Yan, X., Lin, Y., Yang, D., Shen, Y., Yuan, M., Zhang, Z., Li, P., Xia, H., Li, L., Luo, D., et al. (2003). A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 102, 184–191. [PMID: 12609848]
Yang, M., Li, S., Liu, W., Li, X., He, Y., Yang, Y., Sun, K., Zhang, L., Tian, W., Duan, L., et al. (2021). The ER membrane protein complex subunit Emc3 controls angiogenesis via the FZD4/WNT signaling axis. Sci China Life Sci, doi: https://doi.org/10.1007/s11427-021-1941-7 .
Ye, Z., Zhang, C., Tu, T., Sun, M., Liu, D., Lu, D., Feng, J., Yang, D., Liu, F., and Yan, X. (2013). Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nat Commun 4, 2803. [PMID: 24335906]
Ylä-Herttuala, S., Rissanen, T.T., Vajanto, I., and Hartikainen, J. (2007). Vascular endothelial growth factors. J Am Coll Cardiol 49, 1015–1026. [PMID: 17349880]
Yoshioka, S., Fujiwara, H., Higuchi, T., Yamada, S., Maeda, M., and Fujii, S. (2003). Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-alpha. Mol Hum Reprod 9, 311–319. [PMID: 12771231]
Zhang, L., Luo, Y., Teng, X., Wu, Z., Li, M., Xu, D., Wang, Q., Wang, F., Feng, J., Zeng, X., et al. (2018). CD146: a potential therapeutic target for systemic sclerosis. Protein Cell 9, 1050–1054. [PMID: 29671201]
Zheng, C., Qiu, Y., Zeng, Q., Zhang, Y., Lu, D., Yang, D., Feng, J., and Yan, X. (2009). Endothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization. Int J Biochem Cell Biol 41, 2163–2172. [PMID: 19782948]
Zhou, H.J., Xu, Z., Wang, Z., Zhang, H., Zhuang, Z.W., Simons, M., and Min, W. (2018). SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nat Commun 9, 3303. [PMID: 30120232]
Zhu, W., Shi, D.S., Winter, J.M., Rich, B.E., Tong, Z., Sorensen, L.K., Zhao, H., Huang, Y., Tai, Z., Mleynek, T.M., et al. (2017). Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. J Clin Invest 127, 4569–4582. [PMID: 29058688]

MeSH Term

Animals
CD146 Antigen
Choroid Diseases
Choroidal Neovascularization
Humans
Hypoxia
Neovascularization, Pathologic
Retinal Diseases
Retinal Neovascularization
Vascular Endothelial Growth Factor A

Chemicals

CD146 Antigen
Vascular Endothelial Growth Factor A

Word Cloud

Similar Articles

Cited By