Population receptive fields in nonhuman primates from whole-brain fMRI and large-scale neurophysiology in visual cortex.

P Christiaan Klink, Xing Chen, Wim Vanduffel, Pieter R Roelfsema
Author Information
  1. P Christiaan Klink: Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands. ORCID
  2. Xing Chen: Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands. ORCID
  3. Wim Vanduffel: Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium.
  4. Pieter R Roelfsema: Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands. ORCID

Abstract

Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

Keywords

References

  1. Hum Brain Mapp. 2018 Jun;39(6):2472-2481 [PMID: 29464880]
  2. Elife. 2018 Nov 26;7: [PMID: 30475210]
  3. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41 [PMID: 25205811]
  4. Neuroimage. 2018 Feb 15;167:84-94 [PMID: 29155081]
  5. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13525-30 [PMID: 26483452]
  6. J Neurophysiol. 1992 Apr;67(4):961-80 [PMID: 1588394]
  7. J Vis. 2012 Mar 08;12(3):10 [PMID: 22408041]
  8. J Neurosci. 2018 Jan 3;38(1):149-157 [PMID: 29133433]
  9. J Neurophysiol. 2013 Jul;110(2):481-94 [PMID: 23615546]
  10. Curr Opin Neurobiol. 2019 Oct;58:61-69 [PMID: 31336326]
  11. Front Neuroinform. 2015 Sep 29;9:23 [PMID: 26483666]
  12. Front Neurosci. 2008 Dec 15;2(2):199-207 [PMID: 19225593]
  13. Eur J Neurosci. 2011 Dec;34(11):1857-70 [PMID: 22081989]
  14. Science. 2005 Aug 5;309(5736):951-4 [PMID: 16081741]
  15. Exp Brain Res. 2000 Jun;132(3):287-305 [PMID: 10883378]
  16. J Neurophysiol. 2011 Mar;105(3):1150-8 [PMID: 21177995]
  17. J Neurophysiol. 1989 Apr;61(4):799-813 [PMID: 2723721]
  18. Science. 2020 Dec 4;370(6521):1191-1196 [PMID: 33273097]
  19. Front Neurosci. 2019 Apr 26;13:385 [PMID: 31105515]
  20. J Neurophysiol. 1989 Apr;61(4):814-32 [PMID: 2723722]
  21. Neuroimage. 2020 Mar;208:116465 [PMID: 31863915]
  22. Science. 1966 Nov 18;154(3751):920 [PMID: 6003542]
  23. J Neurosci. 2018 Feb 28;38(9):2294-2303 [PMID: 29382711]
  24. JAMA Neurol. 2019 Nov 1;76(11):1391-1396 [PMID: 31403655]
  25. Science. 1995 May 12;268(5212):889-93 [PMID: 7754376]
  26. J Neurosci. 2020 Jul 8;40(28):5471-5479 [PMID: 32513825]
  27. J Neurosci. 2002 Dec 1;22(23):10416-26 [PMID: 12451141]
  28. Front Neuroenergetics. 2010 Jun 02;2: [PMID: 20725519]
  29. Trends Cogn Sci. 2015 Jun;19(6):349-57 [PMID: 25850730]
  30. J Neurophysiol. 2010 May;103(5):2315-7 [PMID: 20220081]
  31. J Neurosci. 2010 Jul 21;30(29):9801-20 [PMID: 20660263]
  32. Behav Brain Res. 1983 Feb;7(2):179-210 [PMID: 6830651]
  33. J Neurosci Methods. 2016 May 1;264:47-56 [PMID: 26945974]
  34. J Comp Neurol. 1981 Oct 1;201(4):519-39 [PMID: 7287933]
  35. J Neurosci Methods. 2010 Sep 30;192(1):146-51 [PMID: 20637804]
  36. J Neurosci. 2003 May 15;23(10):3963-71 [PMID: 12764080]
  37. Curr Opin Neurobiol. 2007 Apr;17(2):154-60 [PMID: 17306527]
  38. Science. 2005 Aug 5;309(5736):948-51 [PMID: 16081740]
  39. Nat Neurosci. 2008 Oct;11(10):1193-200 [PMID: 18711393]
  40. Neuron. 2001 Nov 20;32(4):565-77 [PMID: 11719199]
  41. Neuroimage. 2020 Jul 15;215:116822 [PMID: 32276070]
  42. PLoS Comput Biol. 2013;9(7):e1003137 [PMID: 23874180]
  43. J Neurosci. 2004 Oct 13;24(41):8975-85 [PMID: 15483116]
  44. J Neurophysiol. 1994 Nov;72(5):2151-66 [PMID: 7884450]
  45. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2306-2311 [PMID: 30674668]
  46. Neuroimage. 2011 Sep 1;58(1):60-8 [PMID: 21704174]
  47. J Neurosci. 2018 Jan 31;38(5):1202-1217 [PMID: 29263238]
  48. Annu Rev Neurosci. 1985;8:407-30 [PMID: 3885829]
  49. Dev Cogn Neurosci. 2019 Jun;37:100614 [PMID: 30777677]
  50. Annu Rev Vis Sci. 2018 Sep 15;4:357-379 [PMID: 29889657]
  51. Neuron. 2012 Jul 12;75(1):143-56 [PMID: 22794268]
  52. J Neurosci. 2009 Sep 16;29(37):11540-9 [PMID: 19759301]
  53. Neuroimage. 2004 Apr;21(4):1748-61 [PMID: 15050595]
  54. Cereb Cortex. 2020 May 18;30(6):3518-3527 [PMID: 32031204]
  55. J Neurosci. 2009 May 27;29(21):7031-9 [PMID: 19474330]
  56. Curr Biol. 2008 May 6;18(9):631-40 [PMID: 18439825]
  57. Nature. 2009 Jan 22;457(7228):475-9 [PMID: 19158795]
  58. J Neurosci Methods. 1998 Jul 1;82(1):1-15 [PMID: 10223510]
  59. Cortex. 2020 Jul;128:107-123 [PMID: 32334151]
  60. Science. 2004 Jun 25;304(5679):1926-9 [PMID: 15218136]
  61. Nature. 1994 Jun 16;369(6481):525 [PMID: 8031403]
  62. Science. 2008 Jul 18;321(5887):414-7 [PMID: 18635806]
  63. Curr Biol. 2019 Jul 8;29(13):2229-2236.e3 [PMID: 31231052]
  64. Elife. 2019 Nov 29;8: [PMID: 31782730]
  65. Prog Brain Res. 2005;147:263-82 [PMID: 15581712]
  66. Brain Struct Funct. 2020 Nov;225(8):2447-2461 [PMID: 32875354]
  67. J Neurosci. 2007 Jul 25;27(30):8122-37 [PMID: 17652603]
  68. J Neurosci. 2020 Nov 25;40(48):9250-9259 [PMID: 33087475]
  69. Neuroimage. 2013 Jan 15;65:424-32 [PMID: 23085107]
  70. J Neurosci. 2014 Oct 15;34(42):13878-91 [PMID: 25319685]
  71. Nat Neurosci. 2009 Dec;12(12):1594-600 [PMID: 19915566]
  72. J Physiol. 1962 Jan;160:106-54 [PMID: 14449617]
  73. Eur J Neurosci. 2013 Nov;38(10):3456-64 [PMID: 24033706]
  74. J Neurosci. 2019 Oct 9;39(41):8079-8088 [PMID: 31434689]
  75. Front Neuroinform. 2015 Apr 10;9:8 [PMID: 25914639]
  76. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4728-33 [PMID: 20173093]
  77. J Physiol. 1968 Mar;195(1):215-43 [PMID: 4966457]
  78. J Physiol. 1906 Mar 13;34(1-2):1-50 [PMID: 16992835]
  79. Trends Neurosci. 2002 Jan;25(1):27-31 [PMID: 11801335]
  80. Nat Rev Neurosci. 2013 Nov;14(11):770-85 [PMID: 24135696]
  81. Hum Brain Mapp. 2004 Apr;21(4):213-20 [PMID: 15038003]
  82. J Comp Neurol. 1987 May 22;259(4):529-48 [PMID: 3597827]
  83. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  84. Neuron. 2008 Nov 26;60(4):709-19 [PMID: 19038226]
  85. J Neurosci. 2021 Mar 17;41(11):2420-2427 [PMID: 33531414]
  86. Nat Commun. 2021 Jun 29;12(1):4029 [PMID: 34188047]
  87. J Neurosci. 2015 Jul 8;35(27):9836-47 [PMID: 26156986]
  88. J Neurosci Methods. 2017 Jul 15;286:38-55 [PMID: 28512008]
  89. Curr Biol. 2020 Apr 20;30(8):1424-1434.e6 [PMID: 32142704]
  90. J Neurosci. 2017 Aug 2;37(31):7373-7389 [PMID: 28674177]
  91. J Vis. 2014 Jan 22;14(1): [PMID: 24453343]
  92. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  93. J Neurophysiol. 2016 Oct 1;116(4):1986-1999 [PMID: 27489369]
  94. Neuroimage. 2018 Oct 15;180(Pt A):173-187 [PMID: 28890416]
  95. J Neurophysiol. 2007 Sep;98(3):1600-9 [PMID: 17615131]
  96. J Neurosci. 2011 Feb 9;31(6):2064-78 [PMID: 21307244]
  97. Curr Biol. 2013 Jul 8;23(13):1145-53 [PMID: 23770184]
  98. J Neurosci. 1999 Jun 15;19(12):5074-84 [PMID: 10366640]
  99. J Neurophysiol. 2002 Nov;88(5):2530-46 [PMID: 12424292]
  100. J Neurophysiol. 2009 Nov;102(5):2704-18 [PMID: 19587323]
  101. J Neurosci. 2000 Mar 15;20(6):RC63 [PMID: 10704517]
  102. Cereb Cortex. 2008 Sep;18(9):2158-68 [PMID: 18234687]
  103. Curr Biol. 2007 Aug 7;17(15):1275-85 [PMID: 17686438]
  104. J Neurosci. 1988 Jun;8(6):1831-45 [PMID: 3385477]
  105. Neuroimage. 2017 Feb 1;146:1071-1083 [PMID: 27554527]
  106. J Comp Neurol. 1999 Apr 28;407(1):92-102 [PMID: 10213190]
  107. Elife. 2021 Nov 03;10: [PMID: 34730515]
  108. PLoS One. 2017 Sep 18;12(9):e0183295 [PMID: 28922355]
  109. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  110. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6425-6434 [PMID: 30867291]
  111. Cereb Cortex. 2006 Jul;16(7):1040-55 [PMID: 16207931]
  112. Nat Neurosci. 2019 May;22(5):797-808 [PMID: 30988525]
  113. Nat Neurosci. 2006 Apr;9(4):569-77 [PMID: 16547508]
  114. Vision Res. 2011 Apr 13;51(7):718-37 [PMID: 20692278]
  115. Neuroimage. 2021 Jan 15;225:117518 [PMID: 33137472]
  116. Vision Res. 1984;24(5):429-48 [PMID: 6740964]
  117. Nat Neurosci. 2007 Oct;10(10):1308-12 [PMID: 17828254]
  118. J Neurophysiol. 1987 Apr;57(4):889-920 [PMID: 3585463]
  119. J Neurosci. 1986 Aug;6(8):2327-51 [PMID: 3746412]
  120. Neuron. 2017 Jul 5;95(1):209-220.e3 [PMID: 28625487]
  121. Neuroimage. 2020 Oct 15;220:116926 [PMID: 32442640]
  122. Neuroimage. 2018 Apr 15;170:121-131 [PMID: 28461058]
  123. J Neurosci. 2011 Sep 7;31(36):12954-62 [PMID: 21900574]
  124. J Comp Neurol. 1986 Oct 8;252(2):139-53 [PMID: 3782504]
  125. J Comp Neurol. 1974 Dec 1;158(3):295-305 [PMID: 4436457]
  126. J Physiol. 1959 Oct;148:574-91 [PMID: 14403679]
  127. Nature. 2001 Jul 12;412(6843):150-7 [PMID: 11449264]
  128. J Neurosci. 2014 Jul 30;34(31):10168-91 [PMID: 25080580]
  129. Trends Neurosci. 2008 Sep;31(9):444-53 [PMID: 18676033]
  130. J Neurosci. 2014 Feb 12;34(7):2713-24 [PMID: 24523560]
  131. Brain Res. 2009 Jul 28;1282:183-200 [PMID: 19486899]
  132. J Neurosci. 2006 Dec 20;26(51):13128-42 [PMID: 17182764]
  133. Annu Rev Physiol. 2004;66:735-69 [PMID: 14977420]
  134. Neuroimage. 2015 Jan 15;105:428-39 [PMID: 25449742]
  135. Neuroimage. 2021 Feb 1;226:117519 [PMID: 33227425]
  136. Nat Neurosci. 2017 Dec;20(12):1761-1769 [PMID: 29184204]
  137. Neuron. 2011 Dec 8;72(5):847-58 [PMID: 22153379]
  138. J Neurosci. 2008 Aug 20;28(34):8553-9 [PMID: 18716214]
  139. J Neurosci. 2020 Apr 15;40(16):3292-3303 [PMID: 32139585]
  140. Neuroimage. 2012 Aug 15;62(2):1195-200 [PMID: 21985909]
  141. Neuron. 2007 Oct 25;56(2):366-83 [PMID: 17964252]
  142. Cereb Cortex. 2017 Sep 1;27(9):4463-4477 [PMID: 27566980]
  143. Curr Biol. 2019 Jun 17;29(12):2051-2057.e3 [PMID: 31178323]
  144. Neuron. 2006 Feb 2;49(3):433-45 [PMID: 16446146]
  145. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):709-31 [PMID: 15937009]
  146. Brain Res Rev. 2010 Mar;62(2):233-44 [PMID: 20026191]
  147. Neuroimage. 2013 Feb 1;66:376-84 [PMID: 23110879]
  148. Nat Neurosci. 2000 Jul;3(7):716-23 [PMID: 10862705]
  149. Cereb Cortex. 2007 Oct;17(10):2293-302 [PMID: 17172632]
  150. J Neurosci. 2011 Dec 14;31(50):18506-21 [PMID: 22171051]
  151. J Vis. 2011 Dec 23;11(5):12 [PMID: 22199162]
  152. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 [PMID: 20439733]
  153. Neuron. 2009 Jan 15;61(1):35-41 [PMID: 19146811]
  154. Neuron. 1998 Mar;20(3):401-12 [PMID: 9539118]
  155. Neuroimage. 2019 Oct 1;199:245-260 [PMID: 31158480]
  156. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  157. Curr Biol. 2019 May 20;29(10):1689-1694.e3 [PMID: 31080082]
  158. J Comp Neurol. 1988 Sep 15;275(3):326-45 [PMID: 3225342]
  159. J Neurosci. 2014 Jul 30;34(31):10156-67 [PMID: 25080579]

MeSH Term

Animals
Brain
Brain Mapping
Electroencephalography
Macaca mulatta
Magnetic Resonance Imaging
Male
Neurons
Oxygen
Regional Blood Flow
Visual Cortex

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0receptivefMRIfieldpRFsimilarnonhumanwhole-brainV1V4pRFsPopulationretinotopicbrainfMRI-basedfieldsneuronalsignalprimateslarge-scaleareasvisualcortexbasedLFPpowerprimateneurophysiologymodelingpopularmethodmaporganizationhumanmapsqualitativelyinvasivelyrecordedsingle-cellanimalsremainsunclearrepresentaddressedquestionawakecomparingneurophysiologicalrecordingsexaminedfitsseveralmodelsblood-oxygen-level-dependentBOLDmulti-unitspikingactivityMUAlocalpotentialdifferentfrequencybandsfoundderivedBOLD-fMRIMUA-pRFsgammaalsogavegoodapproximationthusreliablyreflectpropertiesadditionresultsmeasurementsrevealedtuningmanycorticalsubcorticalconsistentincreasesizeincreasingeccentricitywellretinotopicallyspecificdeactivationdefaultmodenetworknodespreviousobservationshumansneuroimagingneurosciencepopulationrhesusmacaquevision

Similar Articles

Cited By