QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels.

John R Clegg, Catherine M Ludolph, Nicholas A Peppas
Author Information
  1. John R Clegg: Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712. ORCID
  2. Catherine M Ludolph: McKetta Department of Chemical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712.
  3. Nicholas A Peppas: Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712.

Abstract

Environmentally responsive nanomaterials have been developed for drug delivery applications, in an effort to target and accumulate therapeutic agents at sites of disease. Within a biological system, these nanomaterials will experience diverse conditions which encompass a variety of solute identities and concentrations. In this study, we developed a new quartz crystal microbalance with dissipation (QCM-D) assay, which enabled the quantitative analysis of nanogel swelling, protein adsorption, and biodegradation in a single experiment. As a proof of concept, we employed this assay to characterize non-degradable and biodegradable poly(acrylamide--methacrylic acid) nanogels. We compared the QCM-D results to those obtained by dynamic light scattering to highlight the advantages and limitations of each method. We detailed our protocol development and practical recommendations, and hope that this study will serve as a guide for others to design application-specific QCM-D assays within the nanomedicine domain.

Keywords

References

  1. J Biomed Mater Res A. 2017 Jun;105(6):1565-1574 [PMID: 28177574]
  2. J Biomed Mater Res A. 2018 Jun;106(6):1677-1686 [PMID: 29453807]
  3. Macromol Biosci. 2017 Jan;17(1): [PMID: 27689827]
  4. Langmuir. 2007 Sep 11;23(19):9760-8 [PMID: 17691829]
  5. AIChE J. 2013 Oct 1;59(10):3578-3585 [PMID: 24634515]
  6. Sci Adv. 2019 Sep 27;5(9):eaax7946 [PMID: 31598554]
  7. Anal Chem. 2018 Mar 20;90(6):4079-4088 [PMID: 29473414]
  8. Int J Pharm. 2014 Aug 25;471(1-2):83-91 [PMID: 24853463]
  9. J Biomed Mater Res A. 2015 Mar;103(3):949-58 [PMID: 24853075]
  10. Biomacromolecules. 2016 Dec 12;17(12):4045-4053 [PMID: 27936715]
  11. Acta Biomater. 2017 Mar 15;51:279-293 [PMID: 28126597]
  12. ACS Nano. 2014 Mar 25;8(3):2908-17 [PMID: 24548237]
  13. Biosens Bioelectron. 2015 Apr 15;66:579-84 [PMID: 25530537]
  14. Environ Sci Technol. 2016 Jan 19;50(2):685-93 [PMID: 26691284]
  15. Adv Mater. 2009 Sep 4;21(32-33):3307-29 [PMID: 20882499]
  16. J Colloid Interface Sci. 2002 Feb 1;246(1):40-7 [PMID: 16290382]
  17. Mater Sci Eng R Rep. 2015 Jul;93:1-49 [PMID: 27134415]
  18. Environ Sci Technol. 2011 Aug 1;45(15):6309-15 [PMID: 21728383]
  19. Bioeng Transl Med. 2018 Nov 22;4(1):17-29 [PMID: 30680315]
  20. Colloids Surf B Biointerfaces. 2019 Jan 1;173:447-453 [PMID: 30326361]
  21. J Colloid Interface Sci. 2013 Oct 15;408:229-34 [PMID: 23932084]
  22. Biomacromolecules. 2003 Sep-Oct;4(5):1099-120 [PMID: 12959572]
  23. Langmuir. 2018 Jan 23;34(3):999-1009 [PMID: 29131641]

Grants

  1. R01 EB022025/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0QCM-DassayswellingnanomaterialsdevelopeddrugdeliverywillstudyproteinadsorptionbiodegradationbiodegradablenanogelsEnvironmentallyresponsiveapplicationsefforttargetaccumulatetherapeuticagentssitesdiseaseWithinbiologicalsystemexperiencediverseconditionsencompassvarietysoluteidentitiesconcentrationsnewquartzcrystalmicrobalancedissipationenabledquantitativeanalysisnanogelsingleexperimentproofconceptemployedcharacterizenon-degradablepolyacrylamide--methacrylicacidcomparedresultsobtaineddynamiclightscatteringhighlightadvantageslimitationsmethoddetailedprotocoldevelopmentpracticalrecommendationshopeserveguideothersdesignapplication-specificassayswithinnanomedicinedomainquantifyingintelligentsystemsstimuli-sensitivepolymerssurfacesinterfaces

Similar Articles

Cited By