A Cost-Effectiveness Analysis of Lung Cancer Screening With Low-Dose Computed Tomography and a Diagnostic Biomarker.

Iakovos Toumazis, S Ayca Erdogan, Mehrad Bastani, Ann Leung, Sylvia K Plevritis
Author Information
  1. Iakovos Toumazis: Departments of Biomedical Data Science and Radiology, Stanford University, Stanford, CA, USA. ORCID
  2. S Ayca Erdogan: Department of Radiology, Stanford University, Stanford, CA, USA. ORCID
  3. Mehrad Bastani: Departments of Biomedical Data Science and Radiology, Stanford University, Stanford, CA, USA. ORCID
  4. Ann Leung: Department of Radiology, Stanford University, Stanford, CA, USA.
  5. Sylvia K Plevritis: Departments of Biomedical Data Science and Radiology, Stanford University, Stanford, CA, USA.

Abstract

Background: The Lung Computed Tomography Screening Reporting and Data System (Lung-RADS) reduces the false-positive rate of lung cancer screening but introduces prolonged periods of uncertainty for indeterminate findings. We assess the cost-effectiveness of a screening program that assesses indeterminate findings earlier via a hypothetical diagnostic biomarker introduced in place of Lung-RADS 3 and 4A guidelines.
Methods: We evaluated the performance of the US Preventive Services Task Force (USPSTF) recommendations on lung cancer screening with and without a hypothetical noninvasive diagnostic biomarker using a validated microsimulation model. The diagnostic biomarker assesses the malignancy of indeterminate nodules, replacing Lung-RADS 3 and 4A guidelines, and is characterized by a varying sensitivity profile that depends on nodules' size, specificity, and cost. We tested the robustness of our findings through univariate sensitivity analyses.
Results: A lung cancer screening program per the USPSTF guidelines that incorporates a diagnostic biomarker with at least medium sensitivity profile and 90% specificity, that costs $250 or less, is cost-effective with an incremental cost-effectiveness ratio lower than $100 000 per quality-adjusted life year, and improves lung cancer-specific mortality reduction while requiring fewer screening exams than the USPSTF guidelines with Lung-RADS. A screening program with a biomarker costing $750 or more is not cost-effective. The health benefits accrued and costs associated with the screening program are sensitive to the disutility of indeterminate findings and specificity of the biomarker, respectively.
Conclusions: Lung cancer screening that incorporates a diagnostic biomarker, in place of Lung-RADS 3 and 4A guidelines, could improve the cost-effectiveness of the screening program and warrants further investigation.

References

  1. N Engl J Med. 2014 Aug 28;371(9):796-7 [PMID: 25162885]
  2. Science. 2018 Feb 23;359(6378):926-930 [PMID: 29348365]
  3. J Thorac Oncol. 2011 Nov;6(11):1841-8 [PMID: 21892105]
  4. Eur Respir J. 2021 Jan 14;57(1): [PMID: 32732334]
  5. Ann Intern Med. 2018 Nov 20;169(10):684-693 [PMID: 30304504]
  6. Value Health. 2011 Jan;14(1):41-52 [PMID: 21211485]
  7. BMC Cancer. 2017 Mar 11;17(1):187 [PMID: 28284200]
  8. Oncotarget. 2017 Dec 26;9(5):6346-6355 [PMID: 29464077]
  9. JAMA Netw Open. 2020 Mar 2;3(3):e200409 [PMID: 32134462]
  10. J Thorac Oncol. 2017 Mar;12(3):578-584 [PMID: 27615397]
  11. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  12. Cancer Causes Control. 2012 Jan;23(1):175-85 [PMID: 22116537]
  13. Ann Intern Med. 2014 Mar 4;160(5):330-8 [PMID: 24378917]
  14. Br J Cancer. 2010 Jan 5;102(1):27-34 [PMID: 19935789]
  15. Tumour Biol. 2012 Oct;33(5):1319-26 [PMID: 22492236]
  16. Ann Intern Med. 2015 Apr 7;162(7):485-91 [PMID: 25664444]
  17. J Thorac Dis. 2013 Oct;5(5):618-25 [PMID: 24255775]
  18. J Thorac Oncol. 2017 Jun;12(6):922-931 [PMID: 28302568]
  19. Cancer Causes Control. 2008 Apr;19(3):317-28 [PMID: 18058248]
  20. MDM Policy Pract. 2016 Jul-Dec;1(1): [PMID: 30148212]
  21. Am J Prev Med. 2019 Jan;56(1):66-73 [PMID: 30467092]
  22. Oncotarget. 2015 Oct 20;6(32):32868-77 [PMID: 26451608]
  23. Ann Intern Med. 2019 Dec 3;171(11):796-804 [PMID: 31683314]
  24. J Natl Cancer Inst. 2013 Sep 18;105(18):1385-93 [PMID: 23940286]
  25. Am J Respir Crit Care Med. 2016 Feb 15;193(4):427-37 [PMID: 26465739]
  26. Risk Anal. 2012 Jul;32 Suppl 1:S39-50 [PMID: 22882891]
  27. J Transl Med. 2015 Feb 12;13:55 [PMID: 25880432]
  28. Cancer Med. 2019 Jan;8(1):94-103 [PMID: 30575329]
  29. Am J Prev Med. 2019 Aug;57(2):250-255 [PMID: 31248742]
  30. Clin Cancer Res. 2017 Nov 15;23(22):7141-7152 [PMID: 28855354]
  31. Clin Cancer Res. 2017 Apr 15;23(8):1998-2005 [PMID: 27729459]
  32. Transl Lung Cancer Res. 2018 Jun;7(3):327-335 [PMID: 30050770]
  33. Ann Intern Med. 2014 Mar 4;160(5):311-20 [PMID: 24379002]
  34. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  35. Med Decis Making. 2006 Jul-Aug;26(4):391-400 [PMID: 16855127]
  36. J Thorac Oncol. 2021 Feb;16(2):228-236 [PMID: 33137463]
  37. Cancer Causes Control. 2017 Sep;28(9):947-958 [PMID: 28702814]
  38. J Clin Oncol. 2014 Mar 10;32(8):768-73 [PMID: 24419137]
  39. EBioMedicine. 2015 Jul 02;2(8):929-36 [PMID: 26425700]
  40. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  41. Cancer. 2014 Nov 1;120(21):3401-9 [PMID: 25065710]
  42. JAMA. 2021 Mar 9;325(10):962-970 [PMID: 33687470]
  43. JAMA. 2021 Mar 9;325(10):988-997 [PMID: 33687469]
  44. Cancer Epidemiol Biomarkers Prev. 2015 Nov;24(11):1716-23 [PMID: 26282632]
  45. PLoS One. 2012;7(12):e51002 [PMID: 23272083]
  46. JNCI Cancer Spectr. 2019 May 23;3(3):pkz035 [PMID: 31942534]
  47. Cancer Prev Res (Phila). 2011 Jul;4(7):1126-34 [PMID: 21733826]
  48. J Natl Cancer Inst. 2015 Mar 19;107(6):djv063 [PMID: 25794889]
  49. JAMA. 2003 Jan 15;289(3):313-22 [PMID: 12525232]
  50. J Thorac Oncol. 2019 Mar;14(3):343-357 [PMID: 30529598]

Grants

  1. R01 CA159258/NCI NIH HHS

MeSH Term

Advisory Committees
Analysis of Variance
Biomarkers, Tumor
Cost-Benefit Analysis
Humans
Lung Neoplasms
Practice Guidelines as Topic
Program Evaluation
Quality-Adjusted Life Years
Radiation Dosage
Sensitivity and Specificity
Tomography, X-Ray Computed
Uncertainty
United States

Chemicals

Biomarkers, Tumor

Word Cloud

Created with Highcharts 10.0.0screeningbiomarkerLung-RADSprogramdiagnosticguidelineslungcancerindeterminatefindingsLungcost-effectiveness34AUSPSTFsensitivityspecificityComputedTomographyScreeningassesseshypotheticalplaceprofileperincorporatescostscost-effectiveBackground:ReportingDataSystemreducesfalse-positiverateintroducesprolongedperiodsuncertaintyassessearlierviaintroducedMethods:evaluatedperformanceUSPreventiveServicesTaskForcerecommendationswithoutnoninvasiveusingvalidatedmicrosimulationmodelmalignancynodulesreplacingcharacterizedvaryingdependsnodules'sizecosttestedrobustnessunivariateanalysesResults:leastmedium90%$250lessincrementalratiolower$100 000quality-adjustedlifeyearimprovescancer-specificmortalityreductionrequiringfewerexamscosting$750healthbenefitsaccruedassociatedsensitivedisutilityrespectivelyConclusions:improvewarrantsinvestigationCost-EffectivenessAnalysisCancerLow-DoseDiagnosticBiomarker

Similar Articles

Cited By