High Pulsatile Load Decreases Arterial Stiffness: An Study.

Cédric H G Neutel, Giulia Corradin, Pauline Puylaert, Guido R Y De Meyer, Wim Martinet, Pieter-Jan Guns
Author Information
  1. Cédric H G Neutel: Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
  2. Giulia Corradin: Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
  3. Pauline Puylaert: Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
  4. Guido R Y De Meyer: Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
  5. Wim Martinet: Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
  6. Pieter-Jan Guns: Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.

Abstract

Measuring arterial stiffness has recently gained a lot of interest because it is a strong predictor for cardiovascular events and all-cause mortality. However, assessing blood vessel stiffness is not easy and the measurements currently used provide only limited information. experiments allow for a more thorough investigation of (altered) arterial biomechanical properties. Such experiments can be performed either statically or dynamically, where the latter better corresponds to physiological conditions. In a dynamic setup, arterial segments oscillate between two predefined forces, mimicking the diastolic and systolic pressures from an setting. Consequently, these oscillations result in a pulsatile load (i.e., the pulse pressure). The importance of pulse pressure on the measurement of arterial stiffness is not completely understood. Here, we demonstrate that pulsatile load modulates the overall stiffness of the aortic tissue in an setup. More specifically, increasing pulsatile load softens the aortic tissue. Moreover, vascular smooth muscle cell (VSMC) function was affected by pulse pressure. VSMC contraction and basal tonus showed a dependence on the amplitude of the applied pulse pressure. In addition, two distinct regions of the aorta, namely the thoracic descending aorta (TDA) and the abdominal infrarenal aorta (AIA), responded differently to changes in pulse pressure. Our data indicate that pulse pressure alters measurements of arterial stiffness and should be considered as an important variable in future experiments. More research should be conducted in order to determine which biomechanical properties are affected due to changes in pulse pressure. The elucidation of the underlying pulse pressure-sensitive properties would improve our understanding of blood vessel biomechanics and could potentially yield new therapeutic insights.

Keywords

References

  1. JACC Heart Fail. 2017 Jun;5(6):449-459 [PMID: 28285118]
  2. PLoS One. 2014 May 21;9(5):e96338 [PMID: 24848371]
  3. Physiol Rep. 2019 Feb;7(4):e13934 [PMID: 30810292]
  4. J Biomech. 2012 Mar 15;45(5):888-94 [PMID: 22176709]
  5. J Am Coll Cardiol. 2010 Mar 30;55(13):1318-27 [PMID: 20338492]
  6. Biomech Model Mechanobiol. 2022 Apr;21(2):553-567 [PMID: 35098393]
  7. Circulation. 2015 Jan 27;131(4):354-61; discussion 361 [PMID: 25416177]
  8. J Physiol. 2016 Nov 1;594(21):6105-6115 [PMID: 27256450]
  9. Circulation. 2000 Sep 12;102(11):1270-5 [PMID: 10982542]
  10. Antioxid Redox Signal. 2009 Jul;11(7):1651-67 [PMID: 19186986]
  11. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):E2352-61 [PMID: 23754369]
  12. Hypertension. 2003 Jun;41(6):1180-2 [PMID: 12756217]
  13. Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1233-H1244 [PMID: 32275471]
  14. PLoS One. 2010 Aug 30;5(8):e12470 [PMID: 20814573]
  15. J Hypertens. 2021 Jan;39(1):117-126 [PMID: 32784350]
  16. Hypertension. 2004 Jun;43(6):1239-45 [PMID: 15123572]
  17. Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1185-H1194 [PMID: 28364019]
  18. Hypertension. 2016 Jul;68(1):236-42 [PMID: 27245180]
  19. J Physiol. 2011 Mar 1;589(Pt 5):1221-33 [PMID: 21224218]
  20. Artif Organs. 2010 Jun;34(6):481-90 [PMID: 20456326]
  21. Physiol Meas. 2007 Aug;28(8):N39-49 [PMID: 17664666]
  22. Biomater Sci. 2017 Jul 25;5(8):1480-1490 [PMID: 28584885]
  23. Front Physiol. 2018 May 16;9:582 [PMID: 29867592]
  24. Circ Res. 1966 Mar;18(3):278-92 [PMID: 5904318]
  25. J Vasc Res. 1995 Jul-Aug;32(4):254-65 [PMID: 7654882]
  26. Commun Biol. 2018 Jun 28;1:81 [PMID: 30271962]
  27. Sci Rep. 2021 Jan 29;11(1):2671 [PMID: 33514757]
  28. J Biomech Eng. 2019 Sep 1;141(9): [PMID: 30985880]
  29. PLoS One. 2017 Mar 2;12(3):e0173177 [PMID: 28253335]
  30. J Biomech. 2013 Jul 26;46(11):1859-65 [PMID: 23735660]
  31. Arterioscler Thromb Vasc Biol. 2020 May;40(5):1068-1077 [PMID: 32268787]
  32. J Physiol. 1961 May;156(3):458-69 [PMID: 16992076]
  33. Am J Hypertens. 2021 Aug 9;34(7):737-743 [PMID: 33564865]
  34. Sci Rep. 2020 May 6;10(1):7696 [PMID: 32376876]
  35. Curr Hypertens Rev. 2018;14(2):107-122 [PMID: 28738765]
  36. Hypertens Res. 2008 Feb;31(2):377-81 [PMID: 18360058]
  37. J Appl Physiol. 1974 Mar;36(3):381-4 [PMID: 4814310]
  38. Rev Esp Cardiol. 2005 Feb;58(2):167-74 [PMID: 15743563]
  39. Biophys Rev. 2018 Oct;10(5):1257-1262 [PMID: 30269290]
  40. Int J Cancer. 2020 Nov 15;147(10):2924-2933 [PMID: 32700789]
  41. Am J Physiol. 1997 Nov;273(5):H2186-91 [PMID: 9374752]
  42. J Am Heart Assoc. 2018 Jan 22;7(2): [PMID: 29358193]
  43. J Med Eng Technol. 2007 Nov-Dec;31(6):397-409 [PMID: 17852649]
  44. Toxicol Lett. 2021 Aug 1;346:23-33 [PMID: 33895255]
  45. Circulation. 2010 Oct 5;122(14):1379-86 [PMID: 20855656]
  46. Mater Sci Eng C Mater Biol Appl. 2017 Jul 1;76:102-113 [PMID: 28482465]
  47. Front Physiol. 2017 Oct 30;8:858 [PMID: 29163203]
  48. Adv Exp Med Biol. 2018;1065:153-168 [PMID: 30051383]
  49. J Vasc Res. 2000 Mar-Apr;37(2):103-11 [PMID: 10754395]
  50. Pflugers Arch. 2020 Aug;472(8):1031-1040 [PMID: 32488322]
  51. Cardiovasc Pathol. 2008 Mar-Apr;17(2):98-102 [PMID: 18329554]
  52. J Hum Hypertens. 2015 Jun;29(6):351-8 [PMID: 25273859]

Word Cloud

Created with Highcharts 10.0.0pulsepressurearterialstiffnessaortaexperimentspropertiespulsatileloadVSMCbloodvesselmeasurementsbiomechanicalsetuptwoaortictissueaffectedthoracicdescendinginfrarenalchangesbiomechanicsMeasuringrecentlygainedlotintereststrongpredictorcardiovasculareventsall-causemortalityHoweverassessingeasycurrentlyusedprovidelimitedinformationallowthoroughinvestigationalteredcanperformedeitherstaticallydynamicallylatterbettercorrespondsphysiologicalconditionsdynamicsegmentsoscillatepredefinedforcesmimickingdiastolicsystolicpressuressettingConsequentlyoscillationsresultieimportancemeasurementcompletelyunderstooddemonstratemodulatesoverallspecificallyincreasingsoftensMoreovervascularsmoothmusclecellfunctioncontractionbasaltonusshoweddependenceamplitudeappliedadditiondistinctregionsnamelyTDAabdominalAIArespondeddifferentlydataindicatealtersconsideredimportantvariablefutureresearchconductedorderdeterminedueelucidationunderlyingpressure-sensitiveimproveunderstandingpotentiallyyieldnewtherapeuticinsightsHighPulsatileLoadDecreasesArterialStiffness:Study

Similar Articles

Cited By