Persistence of information flow: A multiscale characterization of human brain.

Barbara Benigni, Arsham Ghavasieh, Alessandra Corso, Valeria d'Andrea, Manlio De Domenico
Author Information
  1. Barbara Benigni: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy.
  2. Arsham Ghavasieh: CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy.
  3. Alessandra Corso: CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy.
  4. Valeria d'Andrea: CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy.
  5. Manlio De Domenico: CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy.

Abstract

Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome's information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer's disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).

Keywords

References

  1. Sci Rep. 2016 Feb 25;6:22057 [PMID: 26912196]
  2. Science. 2002 May 3;296(5569):910-3 [PMID: 11988575]
  3. J Neurosci. 2008 Sep 10;28(37):9239-48 [PMID: 18784304]
  4. Nat Hum Behav. 2018 Oct;2(10):765-777 [PMID: 30631825]
  5. PLoS Comput Biol. 2010 Nov 18;6(11):e1001006 [PMID: 21124954]
  6. Transl Psychiatry. 2021 Mar 2;11(1):150 [PMID: 33654073]
  7. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):833-8 [PMID: 24379387]
  8. Sci Adv. 2018 Nov 14;4(11):eaau4914 [PMID: 30443598]
  9. Nat Rev Neurosci. 2011 Jan;12(1):43-56 [PMID: 21170073]
  10. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  11. Neuroimage. 2014 Oct 1;99:533-47 [PMID: 24862075]
  12. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  13. Nat Rev Neurosci. 2015 Jul;16(7):430-9 [PMID: 26081790]
  14. Trends Cogn Sci. 2012 Jan;16(1):17-26 [PMID: 22169776]
  15. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6 [PMID: 21502525]
  16. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5868-73 [PMID: 22467830]
  17. PLoS Comput Biol. 2020 Feb 3;16(2):e1007584 [PMID: 32012151]
  18. Nature. 2012 Sep 27;489(7417):537-40 [PMID: 22972194]
  19. Netw Neurosci. 2019 May 01;3(2):635-652 [PMID: 31157313]
  20. Brain Struct Funct. 2017 Jan;222(1):603-618 [PMID: 27334341]
  21. Netw Neurosci. 2018 Oct 01;2(4):418-441 [PMID: 30294706]
  22. Brain Topogr. 2011 Oct;24(3-4):243-52 [PMID: 21191807]
  23. Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653): [PMID: 25180301]
  24. Neuroimage. 2010 Dec;53(4):1197-207 [PMID: 20600983]
  25. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  26. Trends Cogn Sci. 2004 Sep;8(9):418-25 [PMID: 15350243]
  27. Neuroimage Clin. 2019;22:101680 [PMID: 30710870]
  28. Phys Rev E. 2021 Feb;103(2-1):022311 [PMID: 33735966]
  29. Nat Rev Neurosci. 2015 Mar;16(3):159-72 [PMID: 25697159]
  30. Neuroscientist. 2017 Oct;23(5):499-516 [PMID: 27655008]
  31. Nat Rev Neurosci. 2019 Feb;20(2):117-127 [PMID: 30552403]
  32. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  33. Neuroimage Clin. 2012 Nov 16;2:79-94 [PMID: 24179761]
  34. Cereb Cortex. 2013 Jan;23(1):127-38 [PMID: 22275481]
  35. IEEE Trans Cybern. 2022 Oct;52(10):10468-10478 [PMID: 33878010]
  36. Annu Rev Psychol. 2016;67:613-40 [PMID: 26393868]
  37. Gigascience. 2017 May 1;6(5):1-8 [PMID: 28327916]
  38. Neuropsychopharmacology. 2015 Jan;40(1):171-89 [PMID: 25011468]
  39. Nat Neurosci. 2017 Feb 23;20(3):353-364 [PMID: 28230844]
  40. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  41. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6297-6302 [PMID: 29848631]
  42. Phys Rev E. 2020 Nov;102(5-1):052304 [PMID: 33327131]
  43. Vision Res. 2004 Mar;44(6):621-42 [PMID: 14693189]
  44. Nat Rev Neurosci. 2017 Dec 14;19(1):17-33 [PMID: 29238085]
  45. Neuroimage. 2011 Feb 14;54(4):2683-94 [PMID: 21073960]
  46. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20244-20253 [PMID: 32759211]
  47. Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4880-E4889 [PMID: 29739890]
  48. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 [PMID: 17548818]
  49. Cereb Cortex. 2013 Oct;23(10):2380-93 [PMID: 22875861]
  50. Sci Rep. 2017 Sep 7;7(1):10879 [PMID: 28883408]
  51. Phys Rev Lett. 2009 Apr 24;102(16):160602 [PMID: 19518691]
  52. Elife. 2018 Jan 08;7: [PMID: 29308767]
  53. J R Soc Interface. 2018 Sep 12;15(146): [PMID: 30209045]
  54. Netw Neurosci. 2018;2(3):306-322 [PMID: 30259007]
  55. Curr Opin Neurobiol. 2015 Feb;30:44-50 [PMID: 25238608]
  56. Netw Neurosci. 2020 Nov 01;4(4):1007-1029 [PMID: 33195946]
  57. J Mol Neurosci. 2008;34(1):51-61 [PMID: 18157658]
  58. Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653): [PMID: 25180300]
  59. Nat Neurosci. 2020 Dec;23(12):1644-1654 [PMID: 33077948]
  60. Neuroimage. 2012 Feb 15;59(4):3889-900 [PMID: 22119652]
  61. J R Soc Interface. 2017 Nov;14(136): [PMID: 29187640]
  62. Science. 2009 Oct 16;326(5951):399-403 [PMID: 19833961]
  63. Prog Neurobiol. 2005 Jul;76(4):236-56 [PMID: 16257103]
  64. Nat Rev Neurosci. 2012 Apr 13;13(5):336-49 [PMID: 22498897]
  65. Front Neuroinform. 2009 Oct 30;3:37 [PMID: 19949480]
  66. Dialogues Clin Neurosci. 2013 Sep;15(3):339-49 [PMID: 24174905]
  67. Netw Neurosci. 2021 Aug 30;5(3):646-665 [PMID: 34746621]
  68. Front Neurosci. 2016 Jul 15;10:326 [PMID: 27471443]
  69. Trends Cogn Sci. 2013 Dec;17(12):683-96 [PMID: 24231140]
  70. Phys Rev Lett. 2004 Mar 19;92(11):118701 [PMID: 15089179]
  71. Front Neurosci. 2012 Oct 16;6:152 [PMID: 23087608]
  72. Neuroimage. 2016 Jan 1;124(Pt A):1054-1064 [PMID: 26427642]
  73. J Alzheimers Dis. 2018;65(3):697-711 [PMID: 29562504]
  74. PLoS One. 2010 Apr 27;5(4):e10232 [PMID: 20436911]
  75. Brain Connect. 2021 Feb;11(1):45-55 [PMID: 33317399]
  76. Front Neurosci. 2021 Feb 25;15:630278 [PMID: 33716654]

Word Cloud

Created with Highcharts 10.0.0brainhumaninformationconnectomesnetworkprobabilitynetworksgenerativemodelsInformationanalysisempiricaldifferententropymesoscaledifferenceshealthydiseasemaxposteriorsmallerexchangecrucialvitaltasksdrivediseasesNeuroimagingtechniquesallowindirectmeasurementflowsamongareasconsequentlyreconstructinganalyzedlensscienceHoweverstandardanalysesusuallyfocussmallsetindicatorsjointdistributionproposeinformation-theoreticapproachsyntheticbasedassessconnectome'scapacitystagesdementiaRemarkablyframeworkaccountswholestateovercominglimitationsduelimitedsetsdescriptorsusedprobescalesfindspectraldataliestwoindicatinginterpolationmodulargeometry-drivenstructuralfeaturesfactshowsuitablecharacterizingFinallyobtainedunhealthysubjectsdemonstratesignificantindividualsonesaffectedAlzheimer'sarisemicroscale1%10%Persistenceflow:multiscalecharacterizationAlzheimer’sflowMildcognitiveimpairmentNetworkcommunicationSpectral

Similar Articles

Cited By (5)