Cooperative miRNA-dependent PTEN regulation drives resistance to BTK inhibition in B-cell lymphoid malignancies.

Isha Kapoor, Juraj Bodo, Brian T Hill, Alexandru Almasan
Author Information
  1. Isha Kapoor: Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, USA.
  2. Juraj Bodo: Department of Laboratory Medicine, Institute of Pathology and Laboratory Medicine, Cleveland, OH, USA. ORCID
  3. Brian T Hill: Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, OH, USA.
  4. Alexandru Almasan: Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, USA. almasaa@ccf.org. ORCID

Abstract

Aberrant microRNA (miR) expression plays an important role in pathogenesis of different types of cancers, including B-cell lymphoid malignancies and in the development of chemo-sensitivity or -resistance in chronic lymphocytic leukemia (CLL) as well as diffuse large B-cell lymphoma (DLBCL). Ibrutinib is a first-in class, oral, covalent Bruton's tyrosine kinase (BTK) inhibitor (BTKi) that has shown impressive clinical activity, yet many ibrutinib-treated patients relapse or develop resistance over time. We have reported that acquired resistance to ibrutinib is associated with downregulation of tumor suppressor protein PTEN and activation of the PI3K/AKT pathway. Yet how PTEN mediates chemoresistance in B-cell malignancies is not clear. We now show that the BTKi ibrutinib and a second-generation compound, acalabrutinib downregulate miRNAs located in the 14q32 miRNA cluster region, including miR-494, miR-495, and miR-543. BTKi-resistant CLL and DLBCL cells had striking overexpression of miR-494, miR-495, miR-543, and reduced PTEN expression, indicating further regulation of the PI3K/AKT/mTOR pathway in acquired BTKi resistance. Additionally, unlike ibrutinib-sensitive CLL patient samples, those with resistance to ibrutinib treatment, demonstrated upregulation of 14q32 cluster miRNAs, including miR-494, miR-495, and miR-543 and decreased pten mRNA expression. Luciferase reporter gene assay showed that miR-494 directly targeted and suppressed PTEN expression by recognizing two conserved binding sites in the PTEN 3'-UTR, and subsequently activated AKT. Importantly, overexpression of a miR-494 mimic abrogated both PTEN mRNA and protein levels, further indicating regulation of apoptosis by PTEN/AKT/mTOR. Conversely, overexpression of a miR-494 inhibitor in BTKi-resistant cells restored PTEN mRNA and protein levels, thereby sensitizing cells to BTKi-induced apoptosis. Inhibition of miR-494 and miR-495 sensitized cells by cooperative targeting of pten, with additional miRNAs in the 14q32 cluster that target pten able to contribute to its regulation. Therefore, targeting 14q32 cluster miRNAs may have therapeutic value in acquired BTK-resistant patients via regulation of the PTEN/AKT/mTOR signaling axis.

References

  1. Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol. 2019;16:684–701. [PMID: 31278397]
  2. Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50. [PMID: 19956173]
  3. Young RM, Shaffer AL, Phelan JD, Staudt LM. B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol. 2015;52:77–85. [PMID: 25805587]
  4. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl J Med. 2013;369:32–42. [PMID: 23782158]
  5. O’Brien S, Furman RR, Coutre S, Flinn IW, Burger JA, Blum K, et al. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131:1910–9. [PMID: 29437592]
  6. Patel V, Balakrishnan K, Bibikova E, Ayres M, Keating MJ, Wierda WG, et al. Comparison of acalabrutinib, a selective Bruton tyrosine kinase inhibitor, with ibrutinib in chronic lymphocytic leukemia cells. Clin Cancer Res. 2017;23:3734–43. [PMID: 28034907]
  7. George B, Chowdhury SM, Hart A, Sircar A, Singh SK, Nath UK, et al. Ibrutinib resistance mechanisms and treatment strategies for B-cell lymphomas. Cancers. 2020;12:1328.
  8. Awan FT, Schuh A, Brown JR, Furman RR, Pagel JM, Hillmen P, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3:1553–62. [PMID: 31088809]
  9. Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21:922–6. [PMID: 26193343]
  10. Winter AM, Landsburg DJ, Mato AR, Isaac K, Hernandez-Ilizaliturri FJ, Reddy N, et al. A multi-institutional outcomes analysis of patients with relapsed or refractory DLBCL treated with ibrutinib. Blood. 2017;130:1676–9. [PMID: 28794071]
  11. Landsburg DJ, Hughes ME, Koike A, Bond D, Maddocks KJ, Guo L, et al. Outcomes of patients with relapsed/refractory double-expressor B-cell lymphoma treated with ibrutinib monotherapy. Blood Adv. 2019;3:132–5. [PMID: 30651281]
  12. Graf SA, Cassaday RD, Morris K, Voutsinas JM, Wu QV, Behnia S, et al. Ibrutinib monotherapy in relapsed or refractory, transformed diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2021;21:176–81. [PMID: 33358575]
  13. Tsang M, Shanafelt TD, Call TG, Ding W, Chanan-Khan A, Leis JF, et al. The efficacy of ibrutinib in the treatment of Richter syndrome. Blood. 2015;125:1676–8. [PMID: 25745187]
  14. Smolej L. On the road to optimized BTK inhibition in CLL. Blood. 2021;137:3313–4. [PMID: 34137848]
  15. Romero D. Acalabrutinib — a new option in CLL. Nat Rev Clin Oncol. 2020;17:390. [PMID: 32358576]
  16. Byrd JC, Hillmen P, Ghia P, Kater AP, Chanan-Khan AAA, Furman RR, et al. First results of a head-to-head trial of acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2021;39:7500. [DOI: 10.1200/JCO.2021.39.15_suppl.7500]
  17. Ma Y, Zhang P, Gao Y, Fan H, Zhang M, Wu J. Evaluation of AKT phosphorylation and PTEN loss and their correlation with the resistance of rituximab in DLBCL. Int J Clin Exp Pathol. 2015;8:14875–84. [PMID: 26823817]
  18. Kapoor I, Li Y, Sharma A, Zhu H, Bodo J, Xu W, et al. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis. 2019;10:924.
  19. Wang X, Cao X, Sun R, Tang C, Tzankov A, Zhang J, et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-cell lymphoma. Neoplasia. 2018;20:574–93. [PMID: 29734016]
  20. Estupiñán HY, Wang Q, Berglöf A, Schaafsma GCP, Shi Y, Zhou L, et al. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia. 2021;35:1317–29. [PMID: 33526860]
  21. Mazan-Mamczarz K, Gartenhaus RB. Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res. 2013;37:1420–8. [PMID: 24054860]
  22. Mraz M, Kipps TJ. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54:1836–9. [PMID: 23597135]
  23. Al-harbi S, Choudhary GS, Ebron JS, Hill BT, Vivekanathan N, Ting AH, et al. miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies. Mol Cancer. 2015;14:185.
  24. Yuan J, Zhang Q, Wu S, Yan S, Zhao R, Sun Y, et al. miRNA-223-3p modulates ibrutinib resistance through regulating CHUK/NF-κB signaling pathway in mantle cell lymphoma. Exp Hematol. 2021. Pubmed PMID: 34474146.
  25. Wang Y, Xu J, Gao G, Li J, Huang H, Jin H, et al. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of MIR-494. Oncogene. 2016;35:4080–90. [PMID: 26686085]
  26. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–31. [PMID: 31504780]
  27. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18.
  28. Manodoro F, Marzec J, Chaplin T, Miraki-Moud F, Moravcsik E, Jovanovic JV, et al. Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia. Blood. 2014;123:2066–74. [PMID: 24493669]
  29. Fattore L, Costantini S, Malpicci D, Ruggiero CF, Ascierto PA, Croce CM, et al. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget. 2017;8:22262–78. [PMID: 28118616]
  30. González-Vallinas M, Rodríguez-Paredes M, Albrecht M, Sticht C, Stichel D, Gutekunst J, et al. Epigenetically regulated chromosome 14q32 miRNA cluster induces metastasis and predicts poor prognosis in lung adenocarcinoma patients. Mol Cancer Res. 2018;16:390–402. [PMID: 29330288]
  31. Oshima G, Poli EC, Bolt MJ, Chlenski A, Forde M, Jutzy JMS, et al. DNA methylation controls metastasis-suppressive 14q32-encoded miRNAs. Cancer Res. 2019;79:650–62. [PMID: 30538122]
  32. Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic regulation of microRNA clusters and families during tumor development. Cancers. 2021;13:1–45. [DOI: 10.3390/cancers13061333]
  33. Baer C, Claus R, Frenzel LP, Zicknick M, Park YJ, Gu L, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72:3775–85. [PMID: 22710432]
  34. Bakhshi TJ, Georgel PT. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J. 2020;10:123.
  35. Wu C, Yang J, Li R, Lin X, Wu J, Wu J. Lncrna wt1-as/mir-494-3p regulates cell proliferation, apoptosis, migration and invasion via pten/pi3k/akt signaling pathway in non-small cell lung cancer. Onco Targets Ther. 2021;14:891–904. [PMID: 33603394]
  36. Yan L, Yao J, Qiu J. miRNA-495 suppresses proliferation and migration of colorectal cancer cells by targeting FAM83D. Biomed Pharmacother. 2017;96:974–81. [PMID: 29221726]
  37. Bräuer-Hartmann D, Hartmann JU, Wurm AA, Gerloff D, Katzerke C, Falzacappa MVV, et al. PML/RARα-regulated miR-181a/b cluster targets the tumor suppressor RASSF1A in acute promyelocytic leukemia. Cancer Res. 2015;75:3411–24. [PMID: 26041820]
  38. Liu G, Zhou JP, Dong M. Down-regulation of miR-543 expression increases the sensitivity of colorectal cancer cells to 5-Fluorouracil through the PTEN/PI3K/AKT pathway. Biosci Rep. 2019;39:BSR20190249.
  39. Geraldo MV, Nakaya HI, Kimura ET. Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget. 2017;8:9597–607. [PMID: 28030816]
  40. Zhu L, Wang X, Wang T, Zhu W, Zhou X. MiR-494-3p promotes the progression of endometrial cancer by regulating the PTEN/PI3K/AKT pathway. Mol Med Rep. 2019;19:581–8. [PMID: 30431102]
  41. Cai Y, He T, Liang L, Zhang X, Yuan H. Upregulation of microRNA-337 promotes the proliferation of endometrial carcinoma cells via targeting PTEN. Mol Med Rep. 2016;13:4827–34. [PMID: 27082228]
  42. Pollutri D, Patrizi C, Marinelli S, Giovannini C, Trombetta E, Giannone FA, et al. The epigenetically regulated miR-494 associates with stem-cell phenotype and induces sorafenib resistance in hepatocellular carcinoma. Cell Death Dis. 2018;9:4.
  43. Zhang Q, Li Y, Zhao M, Lin H, Wang W, Li D, et al. MiR-494 acts as a tumor promoter by targeting CASP2 in non-small cell lung cancer. Sci Rep. 2019;9:3008.
  44. Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, et al. Dichloroacetate overcomes oxaliplatin chemoresistance in colorectal cancer through the MIR-543/PTEN/AKT/mTOR pathway. J Cancer. 2019;10:6037–47. [PMID: 31762813]
  45. Sun HB, Chen X, Ji H, Wu T, Lu HW, Zhang Y, et al. MiR-494 is an independent prognostic factor and promotes cell migration and invasion in colorectal cancer by directly targeting PTEN. Int J Oncol. 2014;45:2486–94. [PMID: 25270723]
  46. Romano G, Acunzo M, Garofalo M, Di Leva G, Cascione L, Zanca C, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci USA. 2012;109:16570–5. [PMID: 23012423]
  47. Jishnu PV, Jayaram P, Shukla V, Varghese VK, Pandey D, Sharan K, et al. Prognostic role of 14q32.31 miRNA cluster in various carcinomas: a systematic review and meta-analysis. Clin Exp Metastasis. 2020;37:31–46. [PMID: 31813069]
  48. Honda S, A Chatterjee A, Leichter AL, Myagi H, Minato M, Fujiyoshi S, et al. A MicroRNA Cluster in the DLK1-DIO3 Imprinted Region on Chromosome 14q32.2 Is Dysregulated in Metastatic Hepatoblastomas. Front Oncol. 2020;10:513601.
  49. Tan M, Mu X, Liu Z, Tao L, Wang J, Ge J, et al. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog. Biochem Biophys Res Commun. 2017;483:867–73. [PMID: 28069380]
  50. Zhao X, Lwin T, Silva A, Shah B, Tao J, Fang B, et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017;8:14920.
  51. Paulus A, S Akhtar S, Yousaf H, Manna A, Paulus SM, Bashir Y, et al. Waldenstrom macroglobulinemia cells devoid of BTK C481S or CXCR4 WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017;7:e565.
  52. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015;6:e1593.
  53. Sharma A, Janocha AJ, Hill BT, Smith MR, Erzurum SC, Almasan A. Targeting mTORC1-mediated metabolic addiction overcomes fludarabine resistance in malignant B cells. Mol Cancer Res. 2014;12:1205–15. [PMID: 25061101]
  54. Wang J, Xu-Monette ZY, Jabbar KJ, Shen Q, Manyam GC, Tzankov A, et al. AKT hyperactivation and the potential of AKT-targeted therapy in diffuse large B-cell lymphoma. Am J Pathol. 2017;187:1700. [PMID: 28627414]
  55. Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2021;398:131–42. [PMID: 34246347]
  56. Schmid P, Abaham J, S Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38:423–33. [PMID: 31841354]

Grants

  1. R01 CA184137/NCI NIH HHS

MeSH Term

Agammaglobulinaemia Tyrosine Kinase
Humans
Leukemia, Lymphocytic, Chronic, B-Cell
MicroRNAs
PTEN Phosphohydrolase
Signal Transduction
Transfection

Chemicals

MicroRNAs
Agammaglobulinaemia Tyrosine Kinase
BTK protein, human
PTEN Phosphohydrolase
PTEN protein, human

Word Cloud

Created with Highcharts 10.0.0PTENmiR-494resistanceregulationexpressionB-cellmiRNAs14q32clustermiR-495cellsincludingmalignanciesCLLBTKiacquiredibrutinibproteinmiR-543overexpressionptenmRNAlymphoidDLBCLBTKinhibitorpatientspathwayBTKi-resistantindicatinglevelsapoptosisPTEN/AKT/mTORtargetingAberrantmicroRNAmiRplaysimportantrolepathogenesisdifferenttypescancersdevelopmentchemo-sensitivity-resistancechroniclymphocyticleukemiawelldiffuselargelymphomaIbrutinibfirst-inclassoralcovalentBruton'styrosinekinaseshownimpressiveclinicalactivityyetmanyibrutinib-treatedrelapsedeveloptimereportedassociateddownregulationtumorsuppressoractivationPI3K/AKTYetmediateschemoresistanceclearnowshowsecond-generationcompoundacalabrutinibdownregulatelocatedmiRNAregionstrikingreducedPI3K/AKT/mTORAdditionallyunlikeibrutinib-sensitivepatientsamplestreatmentdemonstratedupregulationdecreasedLuciferasereportergeneassayshoweddirectlytargetedsuppressedrecognizingtwoconservedbindingsites3'-UTRsubsequentlyactivatedAKTImportantlymimicabrogatedConverselyrestoredtherebysensitizingBTKi-inducedInhibitionsensitizedcooperativeadditionaltargetablecontributeThereforemaytherapeuticvalueBTK-resistantviasignalingaxisCooperativemiRNA-dependentdrivesinhibition

Similar Articles

Cited By