An ATX-LPA-Gα-ROCK axis shapes and maintains caudal vein plexus in zebrafish.

Ryohei Okasato, Kuniyuki Kano, Ryoji Kise, Asuka Inoue, Shigetomo Fukuhara, Junken Aoki
Author Information
  1. Ryohei Okasato: Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  2. Kuniyuki Kano: Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  3. Ryoji Kise: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
  4. Asuka Inoue: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
  5. Shigetomo Fukuhara: Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
  6. Junken Aoki: Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA receptor and downstream Gα showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells.

Keywords

References

  1. Curr Mol Med. 2018;18(1):3-14 [PMID: 29577856]
  2. Semin Cell Dev Biol. 2011 Dec;22(9):1028-35 [PMID: 22001248]
  3. Dev Cell. 2015 Jan 12;32(1):109-22 [PMID: 25584797]
  4. Nature. 2005 May 5;435(7038):104-8 [PMID: 15875025]
  5. Dev Cell. 2011 Jul 19;21(1):48-64 [PMID: 21763608]
  6. Mol Cell Biol. 2006 Jul;26(13):5015-22 [PMID: 16782887]
  7. Cardiol Young. 2015 Jun;25(5):1009-11 [PMID: 25249237]
  8. Dev Biol. 2001 Feb 15;230(2):278-301 [PMID: 11161578]
  9. Reprod Sci. 2019 Jan;26(1):139-150 [PMID: 29621954]
  10. Cell. 2019 Mar 7;176(6):1248-1264 [PMID: 30849371]
  11. Cereb Cortex. 2008 Apr;18(4):938-50 [PMID: 17656621]
  12. Sci Rep. 2016 Mar 23;6:23433 [PMID: 27005960]
  13. J Biol Chem. 2011 Dec 23;286(51):43972-43983 [PMID: 21971049]
  14. Exp Physiol. 2011 Apr;96(4):468-75 [PMID: 21402880]
  15. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17382-7 [PMID: 23027955]
  16. Br J Pharmacol. 2010 Aug;160(7):1699-713 [PMID: 20649573]
  17. J Biol Chem. 2009 Jun 26;284(26):17731-41 [PMID: 19386608]
  18. Free Radic Biol Med. 2017 Aug;109:11-21 [PMID: 28109889]
  19. Cell Rep. 2014 Mar 13;6(5):799-808 [PMID: 24561257]
  20. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8281-6 [PMID: 15919816]
  21. Nat Cell Biol. 2011 Jun;13(6):686-92 [PMID: 21572418]
  22. Genes Cells. 2014 Jul;19(7):555-64 [PMID: 24848337]
  23. Nucleic Acids Res. 2011 Jul;39(12):e82 [PMID: 21493687]
  24. ACS Med Chem Lett. 2020 May 14;11(6):1335-1341 [PMID: 32551021]
  25. Am J Pathol. 2008 Nov;173(5):1566-76 [PMID: 18818380]
  26. Genes Cells. 2015 Aug;20(8):647-58 [PMID: 26094551]
  27. Cell Mol Life Sci. 2007 Jan;64(2):230-43 [PMID: 17192809]
  28. Development. 2011 Mar;138(6):1173-81 [PMID: 21307094]
  29. J Cell Sci. 2015 Nov 1;128(21):3871-7 [PMID: 26345369]
  30. PLoS One. 2017 Apr 3;12(4):e0174633 [PMID: 28369143]
  31. Cell Rep. 2017 Aug 29;20(9):2072-2086 [PMID: 28854359]
  32. Dev Cell. 2015 Jan 12;32(1):97-108 [PMID: 25533206]
  33. Annu Rev Physiol. 2017 Feb 10;79:67-91 [PMID: 27813829]
  34. FASEB J. 2008 Oct;22(10):3706-15 [PMID: 18606866]
  35. EMBO J. 2017 Jul 14;36(14):2146-2160 [PMID: 28588064]
  36. Sci Rep. 2019 May 15;9(1):7414 [PMID: 31092842]
  37. Eur Neurol. 2006;56(2):136-8 [PMID: 16960456]
  38. J Biol Chem. 2009 Nov 27;284(48):33561-70 [PMID: 19808661]
  39. Glia. 2012 Oct;60(10):1605-18 [PMID: 22821873]
  40. J Biol Chem. 2006 Sep 1;281(35):25822-30 [PMID: 16829511]
  41. J Lipid Res. 2021 Jan 30;62:100029 [PMID: 33524376]
  42. Science. 2009 Oct 9;326(5950):294-8 [PMID: 19815777]
  43. Nat Commun. 2016 Nov 11;7:13247 [PMID: 27834400]
  44. Sci Rep. 2018 Jun 29;8(1):9840 [PMID: 29959335]
  45. J Biochem. 2019 Mar 1;165(3):269-275 [PMID: 30629186]
  46. Genes Cells. 2011 Oct;16(10):1012-21 [PMID: 21895889]
  47. Genes Cells. 2013 Jun;18(6):450-8 [PMID: 23573916]
  48. Development. 2003 Nov;130(21):5281-90 [PMID: 12954720]
  49. Stem Cells Dev. 2018 Feb 1;27(3):216-224 [PMID: 29239275]
  50. Nat Commun. 2014 May 07;5:3743 [PMID: 24806444]
  51. Nat Med. 2004 Jul;10(7):712-8 [PMID: 15195086]
  52. Cell Mol Life Sci. 2015 Jun;72(12):2377-94 [PMID: 25732591]
  53. J Clin Invest. 2019 Jul 23;129(10):4332-4349 [PMID: 31335323]
  54. Nat Med. 2008 Jan;14(1):45-54 [PMID: 18066075]
  55. Mol Pain. 2008 Feb 08;4:6 [PMID: 18261210]
  56. Dev Cell. 2017 Sep 25;42(6):567-583 [PMID: 28950100]
  57. Phlebology. 2016 Jun;31(5):334-43 [PMID: 26060061]
  58. J Cell Biol. 2002 Jul 22;158(2):227-33 [PMID: 12119361]
  59. J Vis Exp. 2018 Oct 8;(140): [PMID: 30346391]
  60. Sci Rep. 2019 Feb 25;9(1):2662 [PMID: 30804442]
  61. Bioorg Med Chem Lett. 2013 Mar 15;23(6):1865-9 [PMID: 23395664]
  62. Physiology (Bethesda). 2006 Dec;21:388-95 [PMID: 17119151]

Word Cloud

Created with Highcharts 10.0.0CVPformationbloodLPAATXstudyzebrafishmutantcaudalveinplexusvesselsaxisbiologyLysophosphatidicacidpotentialregulatorvascularderivedutilizedmodelorganismmonitorvesseldetailZebrafishLPA-producingenzymedefectPharmacologicalinhibitionresultedfusiondelicateformlargesac-likeMutantembryosreceptordownstreamshowedphenotypeAdministrationOMPTstableLPA-analoginducedrapidconstrictionattenuatedsignificantlyalsofoundflow-induceddependentpresentdemonstratedATX-LPAactscooperativelyflowcontributesmaintenancegeneratingcontractiveforceendothelialcellsATX-LPA-Gα-ROCKshapesmaintainsCellDevelopmental

Similar Articles

Cited By